Analyse canonique,
partition de la variation et analyse CPMV

Plan de l’exposé

1. Analyse canonique de redondance, ACR (RDA)

Pages extraites du chapitre 11 de

2. Analyse canonique des correspondances, ACC (CCA)

3. ACR et ACC partielles : voir le fichier PowerPoint (section 6)

4. Tests de signification en analyse canonique

5. Quelques applications de l’analyse canonique simple et partielle

6. Manova réalisée par RDA

Une page expliquant le codage d’un facteur par des variables binaires. Le codage de deux ou plusieurs facteurs, ainsi que leur interaction, est décrit à l’annexe C de l’article suivant:

Distribution de programmes et de tirés à part en PDF
http://www.bio.umontreal.ca/legendre/
Chapter 11

Canonical analysis

11.0 Principles of canonical analysis

Canonical analysis is the simultaneous analysis of two, or eventually several data tables. It allows ecologists to perform a direct comparison of two data matrices ("direct gradient analysis"; Fig. 10.4, Table 10.1). Typically, one may be interested in the relationship between a first table describing species composition and a second table of environmental descriptors, observed at the same locations; or, say, a table about the chemistry of lakes and another about drainage basin geomorphology.

In indirect comparison (indirect gradient analysis; Section 10.2, Fig. 10.4), the matrix of explanatory variables X does not intervene in the calculation producing the ordination of Y. Correlation or regression of the ordination vectors on X are computed a posteriori. In direct comparison analysis, on the contrary, matrix X intervenes in the calculation, forcing the ordination vectors to be maximally related to combinations of the variables in X. This description applies to all forms of canonical analysis and in particular to the asymmetric forms described in Sections 11.1 to 11.3. There is a parallel in cluster analysis, when clustering results are constrained to be consistent with temporal (Subsection 12.6.4) or spatial relationships (Subsection 13.3.2) among observations, which are inherent to the sampling design. When using a constraint (clustering, ordination), the results should differ from those of unconstrained analysis and be, hopefully, more readily interpretable. Thus, direct comparison analysis allows one to directly test *a priori* ecological hypotheses by (1) bringing out all the variance of Y that is related to X and (2) allowing formal tests of these hypotheses to be performed, as detailed below. Further examination of the unexplained variability may help generate new hypotheses, to be tested using new field observations (Section 13.5).

Canonical form

In mathematics, a canonical form (from the Greek κανών, pronounced “kanôn”, rule) is the simplest and most comprehensive form to which certain functions, relations, or expressions can be reduced without loss of generality. For example, the canonical form of a covariance matrix is its matrix of eigenvalues. In general, methods of canonical analysis use eigenanalysis (i.e. calculation of eigenvalues and eigenvectors), although some extensions of canonical analysis have been described that use multidimensional scaling (MDS) algorithms (Section 9.3).

Excerpt from:

Canonical analysis combines the concepts of ordination and regression. It involves a response matrix Y and an explanatory matrix X (names used throughout this chapter). Like the other ordination methods (Chapter 9; Fig. 11.1a), canonical analysis produces (usually) orthogonal axes from which scatter diagrams may be plotted.

Figure 11.1 Relationships between (a) ordination, (b) regression, and (c) the asymmetric forms of canonical analysis (RDA and CCA). In (c), each canonical axis of Y is constrained to be a linear combination of the explanatory variables X.

Canonical analysis combines the concepts of ordination and regression. It involves a response matrix Y and an explanatory matrix X (names used throughout this chapter). Like the other ordination methods (Chapter 9; Fig. 11.1a), canonical analysis produces (usually) orthogonal axes from which scatter diagrams may be plotted.
<table>
<thead>
<tr>
<th>Ordination simple (Y)</th>
<th>Ordination canonique (Y, X)</th>
<th>Distance préservée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse en composantes principales (ACP, PCA)</td>
<td>Analyse canonique de redondance (ACR, RDA)</td>
<td>Distance euclidienne</td>
</tr>
<tr>
<td>Analyse factorielle des correspondances (AFC, CA)</td>
<td>Analyse canonique des correspondances (ACC, CCA)</td>
<td>Distance du χ^2</td>
</tr>
</tbody>
</table>

Autres formes d’analyse canonique:

- Corrélations canoniques (CCorA) [X_1, X_2]
- Analyse discriminante
Redundancy analysis (RDA) 579

Canonical analysis has become an instrument of choice for ecological analysis. A 1994 bibliography of ecological papers on the subject already contained 379 titles (Birks et al., 1994). CCorA and discriminant analysis are readily available in most major statistical packages. For RDA and CCA, one must rely on specialized ordination packages. The most widely used program is CANOCO* (ter Braak, 1988b). A closely related procedure, called ACPVI (principal component analysis with instrumental variables), is available in the ADE-4 package† (Thioulouse et al., 1996).

11.1 Redundancy analysis (RDA)

Redundancy analysis (RDA) is the direct extension of multiple regression to the modelling of multivariate response data. Redundancy is synonymous with explained variance (Gittins, 1985). The analysis is asymmetric: \(Y \) is the table of response variables and \(X \) is the table of explanatory variables. Looking at the matter from a descriptive perspective, one would say that the ordination of \(Y \) is constrained in such a way that the resulting ordination vectors are linear combinations of the variables in \(X \). The difference between RDA and canonical correlation analysis (CCorA, Section 11.4) is the same as that between simple linear regression and linear correlation analysis. RDA may also be seen as an extension of principal component analysis (Section 9.1), because the canonical ordination vectors are linear combinations of the response variables \(Y \). This means that each ordination vector is a one-dimensional projection of the distribution of the objects in a space that preserves the Euclidean distances \(D_1 \) (Chapter 7) among them. These ordination vectors differ, of course, from the principal components that could be computed on the \(Y \) data table, because they are also constrained to be linear combinations of the variables in \(X \).

Redundancy analysis was first proposed by Rao (1964); in his 1973 book (p. 594-595), he proposed the problem as an exercise at the end of his Chapter 8 on multivariate analysis. The method was later rediscovered by Wollenberg (1977).

The eigenanalysis equation for redundancy analysis

\[
(S_{YX} S_{XX}^{-1} S_{YX} - \lambda_k I) u_k = 0
\]

* CANOCO, which contains procedures for both RDA and CCA, was written by C. J. F. ter Braak who also developed CCA. Distribution: see Table 13.4, p. 784. The package PC-ORD contains a procedure for CCA. Distribution: see footnote in Section 9.3.

† The ADE-4 package (for Macintosh and Windows) was written by D. Chessel and J. Thioulouse at Université de Lyon, France. It is distributed free of charge from the following WWW site: <http://biomserv.univ-lyon1.fr/ADE-4.html>.
may be derived through multiple linear regression, followed by principal component
decomposition (Fig. 11.2). This way of looking at the calculations makes it intuitively
easy to understand what RDA actually does to the data. It also shows that the
calculations can be carried out using any standard general statistical package for
micro-computer or mainframe, provided that multiple regression and principal
component analysis are available; the procedure is also easy to program using
advanced languages such as MATLAB or S-PLUS. RDA is appropriate when the
response data table Y could be analysed, alone, by principal component analysis
(PCA); in other words, when the y variables are linearly related to one another and the
Euclidean distance is deemed appropriate to describe the relationships among objects
in factorial space. The data matrices must be prepared as follows, prior to RDA.

1. The table of response variables Y is of size (n × p), where n is the number of objects
 and p is the number of variables. Centre the response variables on their means, or
 standardize them by column if the variables are not dimensionally homogeneous
 (e.g. a mixture of temperatures, concentrations, pH values, etc.), as one would do prior
to PCA. Centring at this early step simplifies several of the equations from 11.4 to
11.12 in which, otherwise, the centring of the columns of matrix Y should be specified.

2. Table X of the explanatory variables is of size (n × m) with m ≤ n. The variables are
 centred on their respective means for convenience; centring the variables in X and Y
 has the effect of eliminating the regression intercepts, thus simplifying the
interpretation without loss of pertinent information. The X variables may also be
standardized (eq. 1.12). This is not a necessary condition for a valid redundancy
analysis, but removing the scale effects of the physical dimensions of the explanatory
variables (Subsection 1.5.4) turns the regression coefficients into standard regression
coefficients which are comparable to one another. The amount of explained variation,
as well as the fitted values of the regression, remain unchanged by centring or
standardization of the variables in X. In the program CANOCO, for instance,
standardization is automatically performed for the explanatory variables (matrix X)
when computing RDA or CCA.

The distributions of the variables should be examined at this stage, as well as
bivariate plots within and between the sets Y and X. Transformations (Section 1.5)
should be applied as needed to linearize the relationships and make the distributions
more symmetric, reducing the effect of outliers.

If X and Y are made to contain the same data (i.e. X = Y), eq. 11.3 becomes
(S_{YY} – λ I) u_k = 0, which is the equation for principal component analysis (eq. 9.1).
The result of RDA is then a principal component analysis of that data table.

1 — The algebra of redundancy analysis

The following algebraic development describes how to arrive at eq. 11.3 through
multiple regression and principal component analysis. The steps are (Fig. 11.2):
(1) regress each variable in Y on all variables in X and compute the fitted values;
Redundancy analysis (RDA) may be understood as a two-step process: (1) regress each variable in \(Y \) on all variables in \(X \) and compute the fitted \((\hat{y}) \) and residual \((y_{res}) \) values; (2) carry out a principal component analysis of the matrix of fitted values to obtain the eigenvalues and eigenvectors. Two ordinations are obtained, one \((\hat{Y}U) \) in the space of the response variables \(Y \), the other \((\hat{Y}U) \) in the space of the explanatory variables \(X \). Another PCA ordination can be obtained using the matrix of residuals.
(2) carry out a principal component analysis on the matrix of fitted values to obtain the eigenvalues and eigenvectors.

1) For each response variable in table Y, compute a multiple linear regression on all variables in table X. This may be done using any general-purpose statistical package. The matrix equation corresponding to each regression is (eq. 2.19):

$$ b = (X'X)^{-1} X'y $$

so that the matrix equation corresponding to the whole set of regressions (i.e. for all response variables) is

$$ B = (X'X)^{-1} X'Y $$

(11.4)

where B is the matrix of regression coefficients of all response variables Y on the regressors X. Computing all linear regressions simultaneously has been called multivariate linear regression by Finn (1974) and is available, for instance, in the SAS procedure GLM.

In multiple regression, the fitted values \hat{y} are computed as:

$$ \hat{Y} = XB $$

(11.5)

This is the multivariate extension of eq. 10.1. The whole table of fitted values, \hat{Y}, may be computed in a single matrix operation in this way. Using B estimated by eq. 11.4, eq. 11.5 becomes:

$$ \hat{Y} = X [X'X]^{-1} X'Y $$

(11.6)

Because variables X and Y are centred on their respective means, there is no intercept parameter in the B vectors. The \hat{Y} vectors are centred, as is always the case in ordinary linear regression. If $m = n$, X is square; in that case, the multiple regressions always explain the variables in matrix Y entirely, so that $\hat{Y} = Y$. Using property 5 of matrix inverses (Section 2.8), one can indeed verify that eq. 11.6 gives $\hat{Y} = Y$ when X is square.

2) The covariance matrix corresponding to the table of fitted values \hat{Y} is computed from eq. 4.6:

$$ S_{\hat{Y}\hat{Y}} \equiv [1/(n-1)] \hat{Y}'\hat{Y} $$

(11.7)

Replacing \hat{Y} by the expression from eq. 11.6, eq. 11.7 becomes:

$$ S_{\hat{Y}\hat{Y}} \equiv [1/(n-1)] Y'X [X'X]^{-1} X'X [X'X]^{-1} X'Y $$

(11.8)
This equation reduces to:

\[S_{YX} = S_{XX} S^{-1}_{XX} S'_{YX} \] \hspace{1cm} (11.9)

where \(S_{YY} \) is the \((p \times p)\) covariance matrix among the response variables, \(S_{XX} \) the \((m \times m)\) covariance matrix among the regressors (it is actually a matrix \(R_{XX} \) if all the \(X \) variables have been standardized, as suggested above), and \(S_{YX} \) is the \((p \times m)\) covariance matrix among the variables of the two sets; its transpose \(S'_{YX} = S_{XY} \) is of size \((m \times p)\). If the \(Y \) variables had also been standardized, this equation would read \(R_{YX} R^{-1}_{XX} R'_{YX} \), which is the equation for the coefficient of multiple determination (eq. 4.31).

3) The table of fitted values \(\hat{Y} \) is subjected to principal component analysis to reduce the dimensionality of the solution. This corresponds to solving the eigenvalue problem:

\[(S_{YX} - \lambda I) u_k = 0 \] \hspace{1cm} (11.10)

which, using eq. 11.9, translates into:

\[(S_{XX} S^{-1}_{XX} S'_{YX} - \lambda I) u_k = 0 \] \hspace{1cm} (11.11)

This is the equation for redundancy analysis (eq. 11.3); it may also be obtained from the equation for canonical correlation analysis (eq. 11.22), by defining \(S_{11} = S_{YY} = I \) (Rao, 1973; ter Braak, 1987c). Different programs may express the eigenvalues in different ways: raw eigenvalues, fraction of total variance in matrix \(Y \), or percentage; see Tables 11.2 and 11.4 for examples.

The matrix containing the normalized canonical eigenvectors \(u_k \) is called \(U \). The eigenvectors give the contributions of the descriptors of \(\hat{Y} \) to the various canonical axes. Matrix \(U \), of size \((p \times p)\), contains only \(\min\{p, m, n - 1\} \) eigenvectors with non-zero eigenvalues, since the number of canonical eigenvectors cannot exceed the minimum of \(p \), \(m \) and \((n - 1)\):

- It cannot exceed \(p \) which is the size of the reference space of matrix \(Y \). This is obvious in multiple regression, where matrix \(Y \) contains a single variable; the ordination given by the fitted values \(\hat{y} \) is, consequently, one-dimensional.

- It cannot exceed \(m \) which is the number of variables in \(X \). Consider an extreme example: if \(X \) contains a single explanatory variable \((m = 1)\), regressing all \(p \) variables in \(Y \) on this single regressor produces \(p \) fitted vectors \(\hat{y} \) which all point in the same direction of the space; a principal component analysis of matrix \(\hat{Y} \) of these fitted vectors can only produce one common (canonical) variable.

- It cannot exceed \((n - 1)\) which is the maximum number of dimensions required to represent \(n \) points in Euclidean space.
The canonical coefficients in the normalized matrix \mathbf{U} give the contributions of the variables of \mathbf{Y} to the canonical axes. They should be interpreted as in PCA. For biplots (discussed below), matrix \mathbf{U} can be rescaled in such a way that the length of each eigenvector is $\sqrt{\lambda_k}$, using eq. 9.9.

4) The ordination of objects in the space of the response variables \mathbf{Y} can be obtained directly from the centred matrix \mathbf{Y}, using the standard equation for principal components (eq. 9.4) and matrix \mathbf{U} of the eigenvectors \mathbf{u}_k found in eq. 11.11:

$$\mathbf{F} = \mathbf{YU}$$ (11.12)

The ordination vectors (columns of \mathbf{F}) defined in eq. 11.12 are called the vectors of “site scores”. They have variances that are close, but not equal to the corresponding eigenvalues. How to represent matrix \mathbf{F} in biplot diagrams is discussed in point 8 (below).

5) Likewise, the ordination of objects in space \mathbf{X} is obtained as follows:

$$\mathbf{Z} = \hat{\mathbf{Y}}\mathbf{U} = \mathbf{XBU}$$ (11.13)

As stated above, the vectors in matrix $\hat{\mathbf{Y}}$ are centred on their respective means. The right-hand part of eq. 11.13, obtained by replacing $\hat{\mathbf{Y}}$ by its value in eq. 11.5, shows that this ordination is a linear combination of the \mathbf{X} variables. For that reason, these ordination vectors (columns of matrix \mathbf{Z}) are also called “fitted site scores”, or “sample scores which are linear combinations of environmental variables” in program CANOCO. The ordination vectors, as defined in eq. 11.13, have variances equal to the corresponding eigenvalues. The representation of matrix \mathbf{Z} in biplot diagrams is discussed in point 8 (below).

The “site scores” of eq. 11.12 are obtained by projecting the original data (matrix \mathbf{Y}) onto axis k; they approximate the observed data, which contain residuals ($\mathbf{Y} = \hat{\mathbf{Y}} + \mathbf{Y}_{\text{res}}$, Fig. 11.2). On the other hand, the “fitted site scores” of eq. 11.13 are obtained by projecting the fitted values of the multiple regressions (matrix $\hat{\mathbf{Y}}$) onto axis k; they approximate the fitted data. Either set may be used in biplots. The practical difference between “site scores” and “fitted site scores” is further discussed in the second example below and in the numerical example of Section 13.4.

6) The correlation r_k between the ordination vectors in spaces \mathbf{Y} (from eq. 11.12) and \mathbf{X} (from eq. 11.13) for dimension k is called the “species-environment correlation” in program CANOCO. It measures how strong the relationship is between the two data sets, as expressed by each canonical axis k. It should be interpreted with caution because a canonical axis with high species-environment correlation may explain but a small fraction of the variation in \mathbf{Y}, which is given by the amount (or proportion) of variance of matrix \mathbf{Y} explained by each canonical axis; see example in Table 11.2.
Redundancy analysis (RDA) 585

7) The last important information needed for interpretation is the contribution of the explanatory variables X to the canonical ordination axes. Either the regression or the correlation coefficients may be considered:

- Matrix C of the canonical coefficients,

$$C = B U \quad \text{(11.14)}$$

gives directly the weights of the explanatory variables X in the formation of the matrix of fitted site scores. The ordination of objects in the space of the explanatory variables can be found directly by computing XC; these vectors of site scores are the same as in eq. 11.13. The coefficients in the columns of matrix C are identical to the regression coefficients of the ordination scores from eq. 11.13 on the matrix of standardized explanatory variables X; they may thus be interpreted in the same way.

- Correlations may also be computed between the variables in X, on the one hand, and the ordination vectors, in either space Y (from eq. 11.12) or space X (from eq. 11.13), on the other. The correlations between X and the ordination vectors in space X are used to represent the explanatory variables in biplots.

8) In RDA, biplot diagrams may be drawn that contain two sets of points, as in PCA (Subsection 9.1.4), or three sets: site scores (matrices F or Z, from eqs. 11.12 and 11.13), response variables from Y, and explanatory variables from X. Each pair of sets of points forms a biplot. Biplots help interpret the ordination of objects in terms of Y and X. When there are too many objects, or too many variables in Y or X, separate ordination diagrams may be drawn and presented side by side. The construction of RDA biplot diagrams is explained in detail in ter Braak (1994); his conclusions are summarized here. As in PCA, two main types of scalings may be used (Table 9.2):

- RDA scaling type 1 — The eigenvectors in matrix U, representing the scores of the response variables along the canonical axes, are scaled to lengths 1^n. The site scores in space X are obtained from equation $Z = \hat{Y}U$ (eq. 11.13); these vectors have variances equal to λ_k. The site scores in space Y are obtained from equation $F = YU$; the variances of these vectors are usually slightly larger than λ_k because Y contains both the fitted and residual components and has thus more total variance than \hat{Y}. Matrices Z and U, or F and U, can be used together in biplots because the products of the eigenvectors with the site score matrices reconstruct the original matrices perfectly:

* In CANOCO 3.1, RDA scaling −1 produces a matrix U with vectors (“species scores”) scaled to lengths $\sqrt{\lambda_k}$ (or \sqrt{n} in CANOCO 4.0), instead of 1, if all species and site weights are equal. In both versions of CANOCO, the site scores in space X (matrix Z) are scaled to lengths $\sqrt{\lambda_k}$ (or, in other words, to sums of squares of $n\lambda_k$); the site scores in space Y (matrix F) have lengths slightly larger than $\sqrt{\lambda_k}$. For RDA, CANOCO expresses the eigenvalues as fractions of the total variance in Y. As a result, site scores in matrices F and Z, as described in the present Section (\textit{zCAnOCO}), are related to site scores given by CANOCO (z_{CANOCO}) through the formula:

$$z_{\text{CANOCO}} = z_{\text{here}} \sqrt{n/(n-1) \text{Total variance in } Y} \quad .$$

Changing the scaling of species and site score vectors by any multiplicative constant does not change the interpretation of a biplot.
Canonical analysis

A quantitative explanatory variable x may be represented in the biplot using the correlations of x with the fitted site scores. Each correlation is multiplied by $\sqrt{\lambda_k/\text{Total variance in } Y}$, where λ_k is the eigenvalue of the corresponding axis k; this correction accounts for the fact that, in this scaling, the variances of the site scores differ among axes. The correlations were obtained in calculation step 7 above.

The consequences of this scaling, for PCA, are summarized in the right-hand column of Table 9.2. This scaling, called distance biplot, allows the interpretation to focus on the ordination of objects because the distances among objects approximate their Euclidean distances in the space of response variables (matrix Y).

The main features of a distance biplot are the following: (1) Distances among objects in a biplot are approximations of their Euclidean distances. (2) Projecting an object at right angle on a response variable y approximates the value of the object along that variable, as in Fig. 9.3a. (3) The angles among variables y are meaningless. (4) The angles between variables x and y in the biplot reflect their correlations. (5) Binary explanatory x variables may be represented as the centroids of the objects possessing state “1” for that variable. Examples are given in Subsection 2. Since a centroid represents a “mean object”, its relationship to a variable y is found by projecting it at right angle on the variable, as for an object. Distances among centroids, and between centroids and individual objects, approximate Euclidean distances.

• RDA scaling type 2 — Alternatively, one obtains response variable scores by rescaling the eigenvectors in matrix U to lengths $\sqrt{\lambda_k}$, using the transformation $U\hat{\lambda}^{1/2}$. The site scores in space X obtained for scaling 1 (eq. 11.13) are rescaled to unit variances using the transformation $Z\hat{\lambda}^{-1/2}$. The site scores in space Y obtained for scaling 1 are rescaled using the transformation $F\hat{\lambda}^{-1/2}$; the variances of these vectors are usually slightly larger than 1 for the reason explained in the case of scaling 1. Matrices Z and U, or F and U, as rescaled here, can be used together in biplots because the products of the eigenvectors with the site score matrices reconstruct the original matrices perfectly: $ZU' = \hat{Y}$, and $FU' = Y$, as in PCA (Subsection 9.1.4). A quantitative explanatory variable x may be represented in the biplot using the correlations of x with the fitted site scores, obtained in calculation step 7 above.

In CANOCO 3.1, RDA scaling –2 produces a matrix U with vectors (“species scores”) scaled to lengths $\sqrt{\lambda_k}$ (or $\sqrt{\lambda_k}$ in CANOCO 4.0), instead of $\sqrt{\lambda_k}$, if all species and site weights are equal. For RDA, CANOCO expresses the eigenvalues as fractions of the total variance in Y. As a result, the values in matrix U as described here (u_{here}) are related to the “species scores” of CANOCO 3.1 ($u_{\text{CANOCO 3.1}}$) through the formula: $u_{\text{CANOCO 3.1}} = u_{\text{here}} \sqrt{n/\text{Total variance in } Y}$, or $u_{\text{CANOCO 4.0}} = u_{\text{here}} \sqrt{n/\text{Total variance in } Y}$ in CANOCO 4.0. In both versions of CANOCO, the site scores in space X (matrix Z) are scaled to lengths $\sqrt{\lambda_k}$ instead of $\sqrt{\lambda_k-1}$; the site scores in space Y (matrix F) have lengths slightly larger than $\sqrt{\lambda_k}$. Site scores in matrices F and Z, as described in the present Section (z_{here}), are related to site scores given by CANOCO (z_{CANOCO}) through the formula: $z_{\text{CANOCO}} = z_{\text{here}} \sqrt{n/(n-1)}$. Changing the scaling of species and site score vectors by any multiplicative constant does not change the interpretation of a biplot.
The consequences of this scaling, for PCA, are summarized in the central column of Table 9.2. This scaling, called correlation biplot, is appropriate to focus on the relationships among response variables (matrix Y).

The main features of a correlation biplot are the following: (1) Distances among objects in the biplot are not approximations of their Euclidean distances. (2) Projecting an object at right angle on a response variable y approximates the value of the object along that variable. (3) The angles between variables (from sets X and Y) in the biplot reflect their correlations. (4) Projecting an object at right angle on a variable x approximates the value of the object along that variable. (5) Binary explanatory variables may be represented as described above. Their interpretation is done in the same way as in scaling type 1, except for the fact that the distances in the biplot among centroids, and between centroids and individual objects, do not approximate Euclidean distances.

The type of scaling depends on the emphasis one wants to give to the biplot, i.e. display of distances among objects or of correlations among variables. When most explanatory variables are binary, scaling type 1 is probably the most interesting; when most of the variables in set X are quantitative, one may prefer scaling type 2. When the first two eigenvalues are nearly equal, both scalings lead to nearly the same biplot.

9) Redundancy analysis usually does not completely explain the variation in the response variables (matrix Y). During the regression step (Fig. 11.2), regression residuals may be computed for each variable y; the residuals are obtained as the difference between observed values y_{ij} and the corresponding fitted values \hat{y}_{ij} in matrix \hat{Y}. The matrix of residuals (Y_{res} in Fig. 11.2) is also a matrix of size $(n \times p)$. Residuals may be analysed by principal component analysis, leading to $\min[p, n - 1]$ non-canonical eigenvalues and eigenvectors (Fig. 11.2, bottom). So, the full analysis of matrix Y (i.e. the analysis of fitted values and residuals) may lead to more eigenvectors than a principal component analysis of matrix Y: there is a maximum of $\min[p, m, n - 1]$ non-zero canonical eigenvalues and corresponding eigenvectors, plus a maximum of $\min[p, n - 1]$ non-canonical eigenvalues and eigenvectors, the latter being computed from the matrix of residuals (Table 11.1). When the variables in X are good predictors of the variables in Y, the canonical eigenvalues may be larger than the first non-canonical eigenvalues, but this need not always be the case. If the variables in X are not good predictors of Y, the first non-canonical eigenvalues, computed on the residuals, may be larger than their canonical counterparts.

In the trivial case where Y contains a single response variable, redundancy analysis is nothing but multiple linear regression analysis.

2 — Numerical examples

As a first example, consider again the data set presented in Table 10.5. The first five variables are assembled into matrix Y and the three spatial variables make up matrix X. Calculations performed as described above, or using the iterative algorithm
Canonical analysis described in the next subsection, lead to the same results (Table 11.2). There are \(\min[5, 3, 19] = 3 \) canonical eigenvectors in this example and 5 non-canonical PCA axes computed from the residuals. This is a case where the first non-canonical eigenvalue is larger than any of the canonical eigenvalues. The ordination of objects along the canonical axes (calculation steps 4 and 5 in the previous Subsection) as well as the contribution of the explanatory variables to the canonical ordination axes (calculation step 6) are not reported, but the correlations between these two sets of ordinations are given in the Table; they are rather weak. The sum of the three canonical eigenvalues accounts for only 32% of the variation in response matrix \(Y \).

A second example has been constructed to illustrate the calculation and interpretation of redundancy analysis. Imagine that fish have been observed at 10 sites along a transect running from the beach of a tropical island, with water depths going from 1 to 10 m (Table 11.3). The first three sites are on sand and the others alternate between coral and “other substrate”. The first six species avoid the sandy area, possibly because little food is available there, whereas the last three are ubiquitous. The sums of abundances for the 9 species are in the last row of the Table. Species 1 to 6 come in three successive pairs, with distributions forming opposite gradients of abundance between sites 4 and 10. Species 1 and 2 are not associated to a single type of substrate. Species 3 and 4 are found in the coral areas only while species 5 and 6 are found on other substrates only (coral debris, turf, calcareous algae, etc.). The distributions of abundance of the ubiquitous species (7 to 9) have been produced using a random number generator, fitting the frequencies to a predetermined sum; these species will only be used to illustrate CCA in Section 11.2.

RDA was computed using the first six species as matrix \(Y \), despite the fact that CCA (Subsection 11.2) is probably more appropriate for these data. Comparison of Tables 11.4 and 11.5, and of Figs. 11.3 and 11.5, allows, to a certain extent, a comparison of the two methods. The analysis was conducted on centred \(y \) variables because species abundances do not require standardization. When they are not

<table>
<thead>
<tr>
<th></th>
<th>Canonical eigenvalues and eigenvectors</th>
<th>Non-canonical eigenvalues and eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDA</td>
<td>(\min[p, m, n - 1])</td>
<td>(\min[p, n - 1])</td>
</tr>
<tr>
<td>CCA</td>
<td>(\min[(p - 1), m, n - 1])</td>
<td>(\min[(p - 1), n - 1])</td>
</tr>
</tbody>
</table>

Table 11.1 Maximum number of non-zero eigenvalues and corresponding eigenvectors that may be obtained from canonical analysis of a matrix of response variables \(Y(n \times p) \) and a matrix of explanatory variables \(X(n \times m) \) using redundancy analysis (RDA) or canonical correspondence analysis (CCA).
Results of the analysis are presented in Table 11.4; programs such as CANOCO provide more output tables than presented here. The data could have produced 3 canonical axes and up to 6 non-canonical eigenvectors. In this example, only 4 of the 6 non-canonical axes had variance larger than 0. An overall test of significance (Subsection 11.3.2) showed that the canonical relationship between matrices X and Y is very highly significant ($p = 0.001$ after 999 permutations; permutation of residuals using CANOCO). The canonical axes explain 66%, 22% and 8% of the response table’s variance, respectively; they are all significant ($p < 0.05$) and display strong species-environment correlations ($r = 0.999, 0.997, and 0.980$, respectively).

In Table 11.4, the eigenvalues are first given with respect to the total variance in matrix Y, as is customary in principal component analysis. They are also presented as proportions of the total variance in Y as is the practice in program CANOCO in the case of PCA and RDA. The species and sites are scaled for a distance biplot (RDA scaling type 1, Subsection 11.1.1). The eigenvectors (called “species scores” in CANOCO) are normalized to length 1. The site scores (matrix F) are obtained from eq. 11.12. They provide the ordination of the objects in the space of the original matrix Y. These ordination axes are not orthogonal to one another because matrix Y contains the “residual” components of the multiple regressions (Fig. 11.2). The “site scores that are linear combinations of the environmental variables”, or “fitted site scores” (matrix Z, not printed in Table 11.4), are obtained from eq. 11.13. They provide the ordination of the objects in the space of matrix \hat{Y} which contains the fitted values of the multiple regressions (Fig. 11.2). These ordination axes are orthogonal to one another because

Table 11.3

Artificial data set representing observations (e.g. fish abundances) at 10 sites along a tropical reef transect. The variables are further described in the text.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Sp. 1</th>
<th>Sp. 2</th>
<th>Sp. 3</th>
<th>Sp. 4</th>
<th>Sp. 5</th>
<th>Sp. 6</th>
<th>Sp. 7</th>
<th>Sp. 8</th>
<th>Sp. 9</th>
<th>Depth (m)</th>
<th>Substrate type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>5</td>
<td>17</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>45</td>
<td>35</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Table 11.4
Results of redundancy analysis of data in Table 11.3 (selected output). Matrix Y: species 1 to 6. Matrix X: depth and substrate classes.

<table>
<thead>
<tr>
<th>Canonical axes</th>
<th>Non-canonical axes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Eigenvalues (with respect to total variance in $Y = 112.88889$)</td>
<td>74.52267</td>
</tr>
<tr>
<td>Fraction of total variance in Y (these are the eigenvalues of program CANOCO for RDA)</td>
<td>0.66014</td>
</tr>
<tr>
<td>Cumulative fraction of total variance in Y accounted for by axes 1 to k</td>
<td>0.66014</td>
</tr>
</tbody>
</table>

Normalized eigenvectors (“species scores”): mat. U for the canonical and U_{res} for the non-canonical portions

<table>
<thead>
<tr>
<th>Species</th>
<th>Canonical axes</th>
<th>Non-canonical axes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species 1</td>
<td>0.30127</td>
<td>–0.64624</td>
</tr>
<tr>
<td>Species 2</td>
<td>0.20038</td>
<td>–0.47265</td>
</tr>
<tr>
<td>Species 3</td>
<td>0.74098</td>
<td>0.16813</td>
</tr>
<tr>
<td>Species 4</td>
<td>0.55013</td>
<td>0.16841</td>
</tr>
<tr>
<td>Species 5</td>
<td>–0.11588</td>
<td>–0.50594</td>
</tr>
<tr>
<td>Species 6</td>
<td>–0.06292</td>
<td>–0.21535</td>
</tr>
</tbody>
</table>

Site scores (“sample scores”): matrices F for the canonical and F_{res} for the non-canonical portions, eqs. 11.12 and 9.4

<table>
<thead>
<tr>
<th>Site</th>
<th>Canonical axes</th>
<th>Non-canonical axes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>–6.82791</td>
<td>5.64392</td>
</tr>
<tr>
<td>Site 2</td>
<td>–7.12919</td>
<td>6.29016</td>
</tr>
<tr>
<td>Site 3</td>
<td>–6.92880</td>
<td>5.81751</td>
</tr>
<tr>
<td>Site 4</td>
<td>–4.00359</td>
<td>–6.97190</td>
</tr>
<tr>
<td>Site 5</td>
<td>13.63430</td>
<td>0.85534</td>
</tr>
<tr>
<td>Site 6</td>
<td>–4.03654</td>
<td>–5.82821</td>
</tr>
<tr>
<td>Site 7</td>
<td>12.11899</td>
<td>1.03525</td>
</tr>
<tr>
<td>Site 8</td>
<td>–4.08949</td>
<td>–4.68452</td>
</tr>
<tr>
<td>Site 9</td>
<td>11.34467</td>
<td>1.38328</td>
</tr>
<tr>
<td>Site 10</td>
<td>–4.10243</td>
<td>–3.54082</td>
</tr>
</tbody>
</table>

Correlations of environmental variables with site scores from eq. 11.12

<table>
<thead>
<tr>
<th>Environmental variables</th>
<th>Correlations with site scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>0.42204</td>
</tr>
<tr>
<td>Coral</td>
<td>0.98708</td>
</tr>
<tr>
<td>Sand</td>
<td>–0.55572</td>
</tr>
<tr>
<td>Other subs.</td>
<td>–0.40350</td>
</tr>
</tbody>
</table>

Biplot scores of environmental variables

<table>
<thead>
<tr>
<th>Environmental variables</th>
<th>Biplot scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>0.34340</td>
</tr>
<tr>
<td>Coral</td>
<td>0.80314</td>
</tr>
<tr>
<td>Sand</td>
<td>–0.45216</td>
</tr>
<tr>
<td>Other subs.</td>
<td>–0.32831</td>
</tr>
</tbody>
</table>

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram

<table>
<thead>
<tr>
<th>Environmental variables</th>
<th>Centroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral</td>
<td>12.36599</td>
</tr>
<tr>
<td>Sand</td>
<td>–6.96197</td>
</tr>
<tr>
<td>Other subs.</td>
<td>–4.05301</td>
</tr>
</tbody>
</table>
the eigenanalysis (PCA in Fig. 11.2) has been conducted on matrix \(\hat{Y} \). Both the “site scores” (matrix \(F \)) and “fitted site scores” (matrix \(Z \)) may be used in RDA biplots.

Correlations of the environmental variables with the ordination vectors can be obtained in two forms: either with respect to the “site scores” (eq. 11.12) or with respect to the “fitted site scores” (eq. 11.13). The latter set of correlations is used to draw biplots containing the sites as well as the variables from \(Y \) and \(X \) (Fig. 11.3). There were three binary variables in Table 11.3. Each such variable may be represented by the centroid of the sites possessing state “1” for that variable (or else, the centroid of the sites possessing state “0”). These three variables are represented by both arrows (correlations) and symbols (centroids) in Fig. 11.3 to show the difference between these representations; in real-case studies, one chooses one of the representations.

The following question may arise when the effect of some environmental variables on the dependent variables \(Y \) is already well known (e.g. the effect of altitude on vegetation along a mountain slope, or the effect of depth on plankton assemblages): what would the residual ordination of sites (or the residual correlations among variables) be like if one could control for the linear effect of such well-known environmental variables? An approximate answer may be obtained by looking at the structure of the residuals obtained by regressing the original variables on the variables representing the well-known factors. With the present data set, for instance, one could examine the residual structure, after controlling for depth and substrate, by plotting ordination biplots of the non-canonical axes in Table 11.4. These axes correspond to a PCA of the table of residual values of the multiple regressions (Fig. 11.2).

3 — Algorithms

There are different ways of computing RDA. One may go through the multiple regression and principal component analysis steps described in Fig. 11.2, or calculate the matrix corresponding to \(S_{YX} S_{XX}^{-1} S_{YX} \) in eq. 11.3 and decompose it using a standard eigenvalue-eigenvector algorithm.

Alternatively, ter Braak (1987c) suggested to modify his iterative algorithm for principal component analysis (Table 9.5), by incorporating a regression analysis at the end of each iteration, as illustrated in Fig. 11.4. Because it would be cumbersome to repeat a full multiple regression calculation at the end of each iteration and for each

* To obtain a distance biplot based upon the covariance matrix using program CANOCO (version 3 or later), one should centre the response variables (no standardization) and emphasize the ordination of sites by choosing scaling –1 in the “long dialogue” option. In the Windows version of CANOCO 4.0, focus on inter-site distances and do not post-transform the species scores. CANOCO prints the eigenvalues as proportions of the total variation in matrix \(Y \). The scalings of eigenvalues and eigenvectors produced by CANOCO are described in the footnotes of Subsection 11.1.1. Changing the scaling of species and site score vectors by any multiplicative constant does not change the interpretation of a biplot.
canonical eigenvector, a short cut can be used. Vector b of regression coefficients is obtained from eq. 2.19:

$$b = [XX]^{-1} [Xy]$$

Only the $[Xy]$ portion must be recomputed during each iteration of the estimation of the canonical eigenvectors; the $[XX]^{-1}$ part, which is the most cumbersome to calculate, is constant during the whole redundancy analysis run so that it needs to be computed only once.

The iterative procedure presents two advantages: (1) with large problems, one is satisfied, in most instances, with computing a few axes only, instead of having to estimate all eigenvalues and eigenvectors. The iterative procedure was developed to do
that. (2) With smaller problems, the canonical and non-canonical axes can all be computed at once; one does not have to carry out a separate calculation on the matrix of residuals to obtain the non-canonical axes. The main disadvantage of the procedure is the possibility of numerical instability when a large number of successive axes are computed. For large problems in which all the canonical axes are needed, this procedure also requires more calculation time than regular eigenanalysis.

11.2 Canonical correspondence analysis (CCA)

Canonical correspondence analysis is a canonical ordination method developed by ter Braak (1986, 1987a, 1987c) and implemented in the program CANOCO (ter Braak, 1988b, 1988c, 1990; ter Braak & Smilauer, 1998). It is the canonical form of correspondence analysis. Any data table that could be subjected to correspondence analysis forms a suitable **response matrix** \(Y \) for CCA; this is the case, in particular, for species presence-absence or abundance tables (Section 9.4).

I — The algebra of canonical correspondence analysis

The mathematics of CCA is essentially the same as that of redundancy analysis. Differences involve the diagonal matrices of row totals \(D(f_i) \) and row relative frequencies \(D(p_i) \), as defined in Section 9.4 for correspondence analysis; \(f_i \) is the sum of values in row \(i \) of matrix \(Y \) whereas \(p_i \) is \(f_i \), divided by the grand total \(f_+ \) of all values in \(Y \).
The calculations are modified in such a way as to simulate an analysis carried out on inflated data matrices Y_{infl} and X_{infl} constructed in a way similar to the inflated data table of Subsection 9.4.4. Assume that Y contains species presence-absence or abundance data and X contains environmental data. A single species presence, from the original table of species abundances, is placed in each row of Y_{infl}. An inflated matrix Y_{infl} usually has many more rows than matrix Y. In the corresponding inflated matrix X_{infl}, the row vectors of environmental data are repeated as required to make every species presence (in Y_{infl}) face a copy of the appropriate vector of environmental data (in X_{infl}). Modifications to the RDA algorithm are the following:

- The dependent data table is not matrix Y centred by variables (columns) as in RDA. CCA uses matrix Q of the contributions to chi-square, also used in correspondence analysis. Q is derived from matrix Y using eq. 9.32. Matrix Q of the relative frequencies is also computed ($Q = (1/f_{++})Y$); it is used in the scaling operations.

- Matrix X is standardized using weights $D(f_{+})$. To achieve this, compute the mean and standard deviation for each column of the inflated matrix X_{infl}, which contains f_{+} rows, and use them to standardize the environmental data. Use the maximum likelihood estimator for the variance instead of the usual estimator (eq. 4.3); in other words, divide the sum of squared deviations from the mean by the number of rows of matrix X_{infl} (which is equal to f_{+}), instead of the number of rows minus 1.

- Weighted multiple regression is used instead of a conventional multiple regression. The weights, given by diagonal matrix $D(p_{+})^{1/2}$, are applied to matrix X everywhere it occurs in the multiple regression equations, which become:

$$
B = [X' D(p_{+}) X]^{-1} X' D(p_{+})^{1/2} Q
$$

and

$$
\hat{Y} = D(p_{+})^{1/2} X B
$$

The equation for computing \hat{Y} is then:

$$
\hat{Y} = D(p_{+})^{1/2} X [X' D(p_{+}) X]^{-1} X' D(p_{+})^{1/2} Q
$$

(11.15)

The matrix of residuals is computed as $Y_{res} = Q - \hat{Y}$. This is the equivalent, for CCA, of the equation $Y_{res} = Y - \hat{Y}$ used in Fig. 11.2 for RDA.

- Eigenvalue decomposition (eqs. 11.10 and 11.11) is carried out on matrix S_{YY} which, in this case, is simply the matrix of sums of squares and cross products, without division by the number of degrees of freedom — as in correspondence analysis:

$$
S_{YY} = \hat{Y} \hat{Y}
$$

(11.16)
One can show that S_{XX}, computed as described, is equal to $S_{XX}^{-1}S_{XX}^{-1}$ (eq. 11.3 and 11.11) if the covariance matrices S_{XX} and S_{XX} are computed with weights on X, given by matrix $D(p_{i})^{1/2}$, and without division by the number of degrees of freedom.

With these modifications, CCA is computed using eq. 11.3, obtaining matrices \hat{O} of eigenvalues and U of eigenvectors. Canonical correspondence analysis is thus a weighted form of redundancy analysis, applied to dependent matrix Q. It approximates chi-square distances among the rows (objects) of the dependent data matrix, subject to the constraint that the canonical ordination vectors be maximally related to weighted linear combinations of the explanatory variables. The equations are also described in Section 5.9.5 of ter Braak (1987c). The method is perfectly suited to analyse the relationships between species presence/absence or abundance data matrices and tables of environmental variables. The number of canonical and non-canonical axes expected from the analysis are given in Table 11.1. Tests of significance are available, in CCA and RDA, for the total canonical variation and for individual eigenvalues (Subsection 11.3.2).

- The normalized matrix \hat{U} is obtained using eq. 9.38:

$$\hat{U} = QU^{1/2}$$

In CCA, matrix \hat{U} as defined here does not contain the loadings of the rows of \hat{Y} on the canonical axes. It contains instead the loadings of the rows of Q on the ordination axes, as in CA. It will be used to find the site scores (matrices F and \hat{V}) in the space of the original variables Y. The site scores in the space of the fitted values \tilde{Y} will be found using U instead of \hat{U}.

Scalings in CCA

- Matrix V of species scores (for scaling type 1) and matrix \hat{V} of site scores (for scaling type 2) are obtained from U and \hat{U} using the transformations described for correspondence analysis (Subsection 9.4.1):

 eq. 9.41 (species scores, scaling 1): $$V = D(p_{w})^{1/2}U$$

 and eq. 9.42 (site scores, scaling 2): $$\hat{V} = D(p_{w})^{1/2}U$$

 or combining eqs. 9.38 and 9.42: $$\hat{V} = D(p_{w})^{1/2}QU^{1/2}$$

Scalings 1 and 2 are the same as in correspondence analysis (Subsection 9.4.1). Matrices F (site scores for scaling type 1) and \hat{F} (species scores for scaling type 2) are found using eqs. 9.43a and 9.44a:

$$F = \hat{V} \hat{O}^{1/2}$$ and $$\hat{F} = V \hat{O}^{1/2}$$

Equations 9.43b and 9.44b cannot be used here to find F and \hat{F} because the eigenanalysis has been conducted on a covariance matrix (eq. 11.16) computed from
the matrix of fitted values \hat{Y} (eq. 11.15) and not from Q. The site scores which are linear combinations of the environmental variables, corresponding to eq. 11.13 of RDA, are found from Y using the following equations:

For scaling type 1:
$$Z_{\text{scaling 1}} = D(p_{i+})^{-1/2} \hat{Y} U \quad (11.17)$$

For scaling type 2:
$$Z_{\text{scaling 2}} = D(p_{r+})^{-1/2} \hat{Y} U Q^{-1/2} \quad (11.18)$$

With scaling type 1, biplots can be drawn using either F and V, or $Z_{\text{scaling 1}}$ and V. With scaling type 2, one can use either V and \hat{F}, or $Z_{\text{scaling 2}}$ and \hat{F}. The construction and interpretation of CCA biplots is discussed by ter Braak & Verdonschot (1995).

• Residuals can be analysed by applying eigenvalue decomposition (eq. 11.10) to matrix Y_{res}, producing matrices of eigenvalues \hat{Q} and normalized eigenvectors U. Matrix U is obtained using eq. 9.38: $\hat{U} = \hat{Q} U O^{-1/2}$. Species and site scores are obtained for scaling types 1 and 2 (eqs. 9.41, 9.42, 9.43a and 9.44a) using the matrices of row and column sums $D(p_{i+})^{-1/2}$ and $D(p_{r+})^{-1/2}$ of the original matrix Y.

A little-known application of CCA is worth mentioning here. Consider a qualitative environmental variable and a table of species presence-absence or abundance data. How can one “quantify” the qualitative states, i.e. give them values along a quantitative scale which would be related in some optimal way to the species data? CCA provides an easy answer to this problem. The species data form matrix Y; the qualitative variable, recoded as a set of dummy variables, is placed in matrix X. Compute CCA and take the fitted site scores ("site scores which are linear combinations of environmental variables"): they provide a quantitative rescaling of the qualitative variable, maximizing the weighted linear correlation between the dummy variables and matrix Q. In the same way, RDA may be used to rescale a qualitative variable with respect to a table of quantitative variables of the objects if linear relationships can be assumed.

McCune (1997) warns users of CCA against inclusion of noisy or irrelevant explanatory variables in the analysis. They may lead to misleading interpretations.

2 — Numerical example

Table 11.3 will now be used to illustrate the computation and interpretation of CCA. The 9 species are used as matrix Y. Matrix X is the same as in Subsection 11.1.2. Results are presented in Table 11.5 and Fig. 11.5; programs such as CANOCO provide more output tables than presented here. There was a possibility of 3 canonical and 8 non-canonical axes. Actually, the last 2 non-canonical axes have zero variance. An overall test of significance (Subsection 11.3.2) showed that the canonical relationship between matrices X and Y is very highly significant ($p = 0.001$ after 999 permutations, by permutation of residuals under a full model; Subsection 11.3.2). The canonical axes explain 47%, 24% and 10% of the response table’s variance, respectively. They are all significant ($p < 0.05$) and display strong row-weighted species-environment correlations ($r = 0.998, 0.940, \text{and } 0.883$, respectively).
Table 11.5 Results of canonical correspondence analysis of the data in Table 11.3 (selected output). Matrix **Y**: species 1 to 9; **X**: depth and 3 substrate classes. Non-canonical axes VIII and IX not shown.

<table>
<thead>
<tr>
<th>Canonical axes</th>
<th>Non-canonical axes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>0.36614</td>
</tr>
<tr>
<td>Fraction of the total variance</td>
<td>0.46691</td>
</tr>
<tr>
<td>Cumulative fraction of total inertia</td>
<td>0.46691</td>
</tr>
</tbody>
</table>

Eigenvectors ("species scores"): matrices \(\mathbf{f} \) for the canonical and the non-canonical portions (eq. 9.44a)

Species 1: -0.10135 -0.28240 -0.20303 0.00192 0.08223 0.08573 -0.01220
Species 2: -0.14136 -0.30350 0.39544 0.14127 0.02689 0.14325 0.04303
Species 3: 1.01552 -0.09583 -0.19826 0.10480 -0.13003 0.02441 0.04647
Species 4: 1.03621 -0.10962 0.22098 -0.22364 0.24375 -0.02591 -0.05341
Species 5: -1.05372 -0.53718 -0.43808 -0.22348 0.32395 0.12464 -0.11928
Species 6: -0.99856 -0.57396 0.67992 0.38996 -0.29908 0.32845 0.21216
Species 7: -0.25525 0.17817 -0.20413 -0.43340 -0.07071 -0.18817 0.12691
Species 8: -0.14656 0.85736 -0.01525 -0.05276 -0.35448 -0.04168 -0.19901
Species 9: -0.41371 0.70795 0.21570 0.69031 0.14843 -0.33425 -0.00629

Site scores ("sample scores"): matrices \(\mathbf{v} \) for the canonical and the non-canonical portions (eq. 9.42)

Site 1: -0.71059 3.08167 0.21965 1.24529 1.07293 -0.50625 0.24413
Site 2: -0.58477 3.00669 -0.94745 -2.69965 -2.13682 0.81353 0.47153
Site 3: -0.76274 3.15258 2.13925 3.11628 2.30660 -0.69894 -1.39063
Site 4: -1.11231 -1.07151 -1.87528 -0.66637 1.10154 1.43157 -1.10620
Site 5: 0.97912 0.06032 -0.69628 0.61265 -0.98301 0.31567 0.57411
Site 6: -1.04323 -0.45943 -0.63980 -0.28716 0.57393 -1.44981 1.70167
Site 7: 0.95449 0.08470 0.13251 0.42143 0.11155 -0.39424 -0.67396
Site 8: -0.94727 0.10837 0.52611 0.00565 -1.26273 -1.06565 -1.46326
Site 9: 1.14808 -0.49045 0.47835 -1.17016 1.00599 0.07350 0.08605
Site 10: -1.03291 -1.03505 2.74692 1.28084 -0.36299 1.98648 1.05356

Correlations of environmental variables with site scores

Depth: 0.18608 -0.60189 0.65814
Coral: 0.99233 -0.09189 -0.04614
Sand: -0.21281 0.91759 0.03765
Other subs.: -0.87958 -0.44413 0.02466

Correlations of environmental variables with fitted site scores (for biplots)

Depth: 0.18636 -0.64026 0.74521
Coral: 0.99384 -0.09775 -0.05225
Sand: -0.21313 0.97609 0.04263
Other subs.: -0.88092 -0.47245 0.02792

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram

Coral: 1.02265 -0.10059 -0.05376
Sand: -0.66932 3.06532 0.13387
Other subs.: -1.03049 -0.55267 0.03266

Canonical analysis
Scaling type 2 (from Subsection 9.4.1) was used, in this example, to emphasize the relationships among species. As a result, the species (matrix \mathbf{F}) are at the centroids of the sites (matrix \mathbf{V}) in Fig. 11.5a and distances among species approximate their chi-square distances. Species 3 and 4 characterize the sites with coral substrate, whereas species 5 and 6 indicate the sites with “other substrate”. Species 1 and 2, which occupy an intermediate position between the sites with coral and other substrate, are not well represented in the biplot of canonical axes I and II; axis III is needed to adequately represent the variance of these species. Among the ubiquitous species 7 to 9, two are well represented in the subspace of canonical axes I and II; their arrows fall near the middle of the area encompassing the three types of substrate. The sites are not perfectly ordered along the depth vector; the ordering of sites along this variable mainly reflects the difference in species composition between the shallow sandy sites (1, 2, and 3) and the other sites.
Tests de signification par permutations

La distribution d’échantillonnage de la (ou des) statistique(s) est obtenue et permutant au hasard les lignes du premier vecteur ou de la première matrice et en recalculant la (ou les) statistique(s).
Le test s’effectue en comparant à cette (ces) distribution(s) d’échantillonnage la valeur de la (ou des) statistique(s) obtenue(s) pour les données non permuées.

I - Corrélation entre x_1 et x_2 :

Statistique : r de Pearson ou corrélation non-paramétrique

II - Régression multiple :

Statistiques : R^2
et coefficients de régression

III - Ordination de Y sous contrainte de X (analyse canonique) :

Statistiques :
• $R^2 = \text{proportion de la variation de } Y$
 expliquée par $X = \sum \text{val. pr. can.} \Rightarrow F$
• Première valeur propre canonique
Sujets connexes

1. Transformation des tableaux de structure de communautés (présence-absence ou abondance d’espèces) pour les rendre utilisables en analyse canonique de redondance (ACR):

2. En présence de covariables, les tests par permutation en régression multiple et en analyse canonique se font par permutation des résidus d’un modèle nul ou d’un modèle complet, comme dans le programme Canoco. La théorie de ces tests est expliquée dans l’article suivant:

Some applications of canonical analysis

• Study species(\(Y\))-environment(\(X\)) relationships.

• Multivariate analysis of variance of species data (\(Y\)).

Methods: db-RDA (Legendre & Anderson, 1999), CCA, or RDA after transformation of the species data (Legendre & Gallagher, 2001).

• Find optimal weights for a set of environmental variables (\(X\)) to be used as predictors for species (\(Y\)).

• Consider a qualitative environmental variable (\(X\)) which will be used to explain the variation of species data (\(Y\)): turn \(X\) into a quantitative variable.

• Multivariate trend surface analysis of species data (\(Y\)), using a polynomial of the geographic coordinates of the sites (\(X\)); test the significance of the spatial structure.

Some applications of partial canonical analysis

• Remove some well-known effects (\(W\)) from the analysis of the species(\(Y\))-environment(\(X\)) relationships, e.g., \(W = \) spatial locations, tide, or time.

• Isolate the effect of a single environmental variable (\(x\)) on species data (\(Y\)) after controlling for the effects of all the other explanatory variables in the study (\(W\)).

• Partition the variation of species data (\(Y\)) among two or several tables of explanatory variables.

• Decomposition of species data (\(Y\)) variation between environmental (\(X,W\)) and spatial components (\(W,X\)) (Borcard & Legendre 1992, 1994).
3.4- Using regression to carry out ANOVA

The ANOVA factor may be coded using dummy variables

Example, intercept + 3 groups: \(\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \)

\[
\mathbf{y} = \begin{bmatrix} y_{11} \\ \vdots \\ y_{1j} \\ y_{21} \\ \vdots \\ y_{2j} \\ y_{31} \\ \vdots \\ y_{3j} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mu \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}
\]

Example using 4 groups:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dummy variables</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Orthogonal dummy variables

2 groups: 3 groups: 4 groups: 5 groups: etc.
1 variable 2 variables 3 variables 4 variables

\[
\begin{bmatrix}
+1 \\
-1
\end{bmatrix}
\quad \begin{bmatrix}
+2 & 0 \\
-1 & +1 \\
-1 & -1
\end{bmatrix}
\quad \begin{bmatrix}
+3 & 0 & 0 \\
-1 & +2 & 0 \\
-1 & -1 & +1 \\
-1 & -1 & -1
\end{bmatrix}
\quad \begin{bmatrix}
+4 & 0 & 0 & 0 \\
-1 & +3 & 0 & 0 \\
-1 & -1 & +2 & 0 \\
-1 & -1 & -1 & +1 \\
-1 & -1 & -1 & -1
\end{bmatrix}
\]

The number of (binary or orthogonal) dummy variables used in the regression equation is equal to the number of degrees of freedom of the among-group variation in ANOVA (= number of groups – 1).

Interaction

A significant interaction between two factors indicates that the effects of one of the factors are not consistent across the levels of the other factor.

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(A_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_1)</td>
<td>(\mu_{A_1B_1})</td>
<td>(\mu_{A_2B_1})</td>
</tr>
<tr>
<td>(B_2)</td>
<td>(\mu_{A_1B_2})</td>
<td>(\mu_{A_2B_2})</td>
</tr>
</tbody>
</table>

Hypothesis of no interaction

\(H_0: \mu_{A_1B_1} - \mu_{A_2B_1} = \mu_{A_1B_2} - \mu_{A_2B_2}\)

\(\mu_{A_1B_1} - \mu_{A_1B_2} = \mu_{A_2B_1} - \mu_{A_2B_2}\)

With more than one factor, one must represent the main factors using orthogonal dummy variables. Interaction dummy variables are the direct products of the dummy variables coding for the main factors. As a consequence, the dummy variables representing interactions will be linearly independent of the dummy variables representing the main factors if the main factors are crossed (two-way design) or nested.
Example: coding an interaction

Factor A: 3 groups ($a = 2$ orthogonal dummy variables)
Factor B: 2 groups ($b = 1$ dummy variable)
Interaction AB: ($a \times b$) dummy variables

$$
y = \begin{bmatrix}
y_{111} \\
y_{112} \\
y_{113} \\
y_{121} \\
y_{122} \\
y_{123} \\
y_{211} \\
y_{212} \\
y_{213} \\
y_{221} \\
y_{222} \\
y_{223} \\
y_{311} \\
y_{312} \\
y_{313} \\
y_{321} \\
y_{322} \\
y_{323}
\end{bmatrix}
\quad X = \begin{bmatrix}
+2 & 0 & 1 & +2 & 0 \\
+2 & 0 & 1 & +2 & 0 \\
+2 & 0 & 1 & +2 & 0 \\
+2 & 0 & -1 & -2 & 0 \\
+2 & 0 & -1 & -2 & 0 \\
+2 & 0 & -1 & -2 & 0 \\
-1 & 1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 & 1 \\
-1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 \\
-1 & -1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1
\end{bmatrix}
\quad b = \begin{bmatrix}
b_{A1} \\
b_{A2} \\
b_{B1} \\
b_{AB11} \\
b_{AB21}
\end{bmatrix}
4- Example 1: ANOVA with 2 crossed factors, computed using RDA

Example 1: Data from Sokal & Rohlf (1981, p. 325). The data may be recoded as follows for RDA:

<table>
<thead>
<tr>
<th>Food consumption</th>
<th>Sex</th>
<th>Lard</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>709</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>679</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>699</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>592</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>538</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>476</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>657</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>594</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>677</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>508</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>505</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>539</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Two-way analysis of variance computed using RDA ($n = 12$):

<table>
<thead>
<tr>
<th></th>
<th>d.f.</th>
<th>RDA (CANOCO, 999 permutations)</th>
<th>Sokal & Rohlf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Σ can. λ</td>
<td>Σ can. λ/d.f.</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>0.0487</td>
<td>0.0487</td>
</tr>
<tr>
<td>Lard</td>
<td>1</td>
<td>0.7890</td>
<td>0.7890</td>
</tr>
<tr>
<td>Interact.</td>
<td>1</td>
<td>0.0118</td>
<td>0.0118</td>
</tr>
<tr>
<td>Resid.</td>
<td>8</td>
<td>0.1504</td>
<td>0.0188</td>
</tr>
</tbody>
</table>

“Σ can. λ” for residuals = sum of the non-canonical eigenvalues. This value is given in each of the three CANOCO output files which are needed to obtain the “Σ can. λ” for Sex, Lard and Interaction.
Analyse de variance par analyse de redondance (ACR)

Le codage en variables orthogonales (contrastes de Helmert\(^1\)) est expliqué en détail à l’annexe C de l’article suivant:

Exemple d’analyse de variance multivariable d’un tableau d’abondances d’espèces (pages suivantes):

\(^1\) Voir pages 155-156 de:
Fig. 6. Ordination biplot illustrating the significant \((P < 0.001) \) effect of *Saccharum* treatment on the relative height growth (RHT) of 16 tree species in the wet season, between May and July 1997. Same-letter superscripts indicate no significant difference \((P > 0.05) \) based on post hoc analysis. *Saccharum* treatment explained 19.8% of the variance between species, with the first and second axes explaining 11.2% and 4.5%, respectively. Arrows indicate treatments and lines indicate species vectors. Codes associated with each species are listed in Table 1, and the symbols match Fig. 2.

Management suggestions

Fire is a major barrier to tree regeneration at our sites, limiting both establishment and species diversity. We therefore recommend the establishment of firebreaks, which have also been an integral part of reforestation strategies in Costa Rica (Janzen 1988) and the Amazon (Nepstad et al. 1990). The breaks must be large for effective fire protection because the flame height of *Saccharum* wildfires can reach >15 m.

Many alternatives have been suggested for forest restoration throughout the wet tropics. These range, in order of increasing cost, from simply allowing natural regeneration to proceed, to planting seeds or seedlings to assist natural regeneration, through establishing tree plantations and allowing recruitment of tree seedlings below them (Brown and Lugo 1994, Guariguata et al. 1995, Kuusipalo et al. 1995). Our goal was to find a low-cost strategy for extensive forest restoration in abandoned Panamanian farmland, and our results suggest that even with the removal of fire, natural tree regeneration will not proceed unassisted because the *Saccharum* poses a formidable barrier to the small-
APPENDIX A

Summary of repeated-measures ANOVA on tree seedling germination, abundance, survival, height, and relative height growth (RHT).

<table>
<thead>
<tr>
<th>Source</th>
<th>Germination</th>
<th>Abundance</th>
<th>Survival</th>
<th>Height</th>
<th>RHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>F</td>
<td>df</td>
<td>F</td>
<td>df</td>
</tr>
<tr>
<td>Between subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>2</td>
<td>0.52</td>
<td>2</td>
<td>3.39</td>
<td>2</td>
</tr>
<tr>
<td>Site × distance</td>
<td>4§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>4</td>
<td>11.68**</td>
<td>4</td>
<td>13.04**</td>
<td>4</td>
</tr>
<tr>
<td>Treatment × distance</td>
<td>8</td>
<td>0.69</td>
<td>8</td>
<td>0.45</td>
<td>8</td>
</tr>
<tr>
<td>Site × treatment</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site × treatment × distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>2</td>
<td>36.31**</td>
<td>3</td>
<td>80.73**</td>
<td>2</td>
</tr>
<tr>
<td>Time × distance</td>
<td>4</td>
<td>0.59</td>
<td>6</td>
<td>1.01</td>
<td>4</td>
</tr>
<tr>
<td>Time × site × distance</td>
<td>8§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time × treatment</td>
<td>8</td>
<td>1.84</td>
<td>12</td>
<td>2.82**</td>
<td>8</td>
</tr>
<tr>
<td>Time × treatment × distance</td>
<td>16</td>
<td>0.92</td>
<td>24</td>
<td>0.80</td>
<td>16</td>
</tr>
<tr>
<td>Time × site × treatment</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The analysis followed a repeated-measures, split-plot design. Sources of variation included distance from the forest as the main plot factor (distance), shading and mowing treatments of the *Saccharum* as the subplot factor (treatment), and their interactions. Site was included as a blocking factor. *P < 0.05; **P < 0.01.

Sample size: n = 45 subjects (i.e., 45 unburned subplots).
Sample size: n = 371 subjects (i.e., 371 seedlings were present over all three time periods in the 45 unburned subplots).
§ Main plot error.
∥ Subplot error.

APPENDIX B

Summary of RDA in a MANCOVA-like design on matrices of germination per species per subplot per time period (germination) or relative growth rates for height (RHT) per species per subplot per time period.

<table>
<thead>
<tr>
<th>Source</th>
<th>Germination</th>
<th>RHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>F</td>
</tr>
<tr>
<td>Site</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Distance</td>
<td>2</td>
<td>1.03</td>
</tr>
<tr>
<td>Treatment</td>
<td>4</td>
<td>2.89**</td>
</tr>
<tr>
<td>Treatment × distance</td>
<td>8</td>
<td>0.70</td>
</tr>
<tr>
<td>Time</td>
<td>3</td>
<td>31.51**</td>
</tr>
<tr>
<td>Time × distance</td>
<td>6</td>
<td>1.01</td>
</tr>
<tr>
<td>Time × treatment</td>
<td>12</td>
<td>1.81**</td>
</tr>
<tr>
<td>Time × treatment × distance</td>
<td>24</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Notes: Sources of variation included distance from the forest (distance), shading and mowing treatments of the *Saccharum* (treatment), time, and their interactions. Site and the interaction of site with all main factors and interactions were used as covariables. *P < 0.05; **P < 0.01 (determined using permutation testing). * For all factors and interactions, denominator df = 60. † For all factors and interactions, denominator df = 16.
Étude de la variation des peuplements d’insectes dans des zones humides du Vénézuéla au cours du temps:

Les mois de l’année forment une variable qualitative multiclasse qui est l’équivalent d’un critère de classification en anova.

Des diagrammes de double projection (« biplots ») montrent les relations entre les familles d’insectes et les mois de l’année, mettant en évidence les différences entre saison des pluies et saison sèche.