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Statement of problem

Eocologas wait to undestand and modd spatial/temporal
community structures through the adyds d species
assemblages.

» Species assemblages are the best response variables avalable to
estimate the impact of [anthropogenic] changes in ecosystems.

e Species assemblages form multivariate data tables (sites X
species).

Spatial structures in communities indicate that some process has
been at work that created them.




Statement of problem

Two families of medhanisms can generae spatid (or tempord)
structures in communities:

» Autocorr elation in the species assembl age (response variables).

* Forcing (explanatory) variables. environmenta or biotic control of
the assembl ages, or historical dynamics.

To understand the mechanisms that generate these structures, we need
to explicitly incorporate the spatial (or temporal) community structures
Into the statistical modd!.




Statement of problem

The scale issue is important in this context:

» Some processes act at a global scale, others arelocal

» Therefore, not all response variables (species) are structured at
the same scde.

» One single response variable can also display structures at more
than one gpatial or temporal scae.

We need statistical methods to model spatial or temporal structures
at all scales.




Principal coordinates of neighbor
matrices (PCNM)

Theory




Consider the following data:

e gpecies data: n sites, p species
 environmental data: n sites, menvironmental variables
o gpatial data: n sites, X (and Y) coordinates

What are our goals?

1.
2.

3.

Model the spatial structure of the species data at all scales
|dentify the scales where structures are present in the
response data.

Decompose the spatial model into submodel s representing

these scales
Interpret the submodels. reveal the species-environment

relationships at the relevant scales




Data Euclidean distances

X

Truncated matrix of Euclidean
distances = neighbor matrix

Multiple regression
or canonical analysis

> Y

X(+)

Eigenvectors with
positive eigenvalues
= PCNM variables

Principal coordinate
anaysis

Eigenvectors

The descriptors of spatial relationships (PCNM base functions) are obtained by
principd coordinate andyss of a truncated matrix of Eudidean (geographic)

distances among the sampling sites.




Notes on PCNM base functions

PCNM vaiables represent a spectral decomposition of the spatid
relationships among the study sites.

They can be computed for regular or irregular sets of pointsin space
or time.

PCNM base functions ae orthogonal. If the sampling desgn is
regular, they look like sne waves. This is a propaty of the egen-
decomposition of the centered form of a distance matrix (Laplacian).

The concept of PCNM has been recently generalized to that of
Distance-Based Eigenvector Maps (DBEM); other ways of computing
such vectors are now available (Dray et al., submitted)?.

1 Dray, S., P. Legendre and P. Peres-Neto. Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling
(submitted).
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Eight of the 67 orthogond PCNM base functions obtained for 100 egualy-spaced
points along a transect. Truncation after the first neighbor.




Principal coordinates of neighbor
matrices (PCNM)

Simulation study




Type | error study

Smulations showed that the procedure is "honest'. It does not
gengae more agnificant reauts that it doud for a gven
significance level a.

Power study

Simulations showed that PCNM andysis is cgpable of detecting
gpatial structures of many kinds:

e random autocorrel ated data,

* bumps and sine waves of vaious sizes, without or with random
noise, representing deterministic structures,

... aslong as the structures are larger than the truncation value used
to create the PCNM base functions.
Detailed results are found in Borcard & Legendre 2002.




Principal coordinates of neighbor
matrices (PCNM)

A difficult ssmulated test case
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1a) Linear trend (12.1%)

NNNN

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

S = N W

1b) Normal patch
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1d) 17 waves (8.0%)
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1) Random normal deviates (50.8%)
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A difficult ssmulated test case
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A difficult ssmulated test case
DeFrended data Model

{a) 1 patch + 4 waves + 17 waves + rand. autocorr. 1b) Spatial model of detrended data
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1¢) Random normal variate 1d) Residuals of spatial model
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Putting space and environment
together:

variation partitioning




Multivariate variation partitioning (Borcard et al. 1992, Borcard and
Legendre 1994) can be applied using PCNM base variables as spatial
or temporal descriptors.

Environmental data Spatial data
matrix X matrix W

Community
composition =
data table Y

[d] = Residuals

Estimation of the R? of the various components are best obtained by
the three following canonical ordinations:

» Response data | Environment + Space : [a] + [b] + []

» Response data | Environment : [a] + [b]

» Response data | Space : [b] + []

Individual fractions are obtained by subtractions of the above.




