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Conceptual Framework

Our method is based on the geostatistical model:

Z(u) = m(u) + R(u), 

Z(u) the spatial variables Z at sampling locations u

m(u) is the large-scale component (deterministic)

R(u) is the “small-scale” component (random)



Random component R(u)

Probabilistic Approach:
“Small-scale” patterns 
Rj(u) viewed as the 
outcome of a spatial 
process with a given 
range of autocorrelation 
(φ)

Variogram is used to 
represent that spatial 
process

Deterministic 
Approach:
Interested in the 
explicit description of 
patterns

φ=20

φ=3



Rj(u) superposition of spatial components with different 
range of autocorrelation
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φ = 3 φ = 7Nugget Total Rj(u)

Superposition of random components

Micro-scale/exp. error Small-scale Intermediate-scale



In the LMC, the random component Rj(u) of each variable 
Zj(u) is viewed as the outcome of the same combination of 
underlying spatial processes.

Linear Model of Coregionalization (LMC)

γRx(h) = 0.16 nugget + 0.31 sph(3) + 0.60 sph(6)
γRy(h) = 0.36 nugget + 0.39 sph(3) + 0.23 sph(6)
γRx-Ry(h) = 0.09 nugget + -0.12 sph(3) + 0.31 sph(6)

Rx Ry Cross(RxRy)

Journel & Huijsbregt, 1978; Goovaerts, 1997



Coregionalization analysis
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Matrices of 

sill 
estimates

rnug = 0.32 rsph(3) = -0.31 rsph(6) = 0.82

In the multivariate case, sill estimate matrices can 
be used in regionalized versions of PCA or RDA 
(Wackernagel et al., 1989)

γRx(h)   =  0.16 nugget + 0.31 sph(3) + 0.60 sph(6)
γRy(h)   =  0.36 nugget + 0.39 sph(3) + 0.23 sph(6)
γRx Ry(h) = 0.09 nugget +-0.12 sph(3) + 0.31 sph(6)



In the presence of spatial drift mj(u), the variogram 
of Zj(u) is biased (not bounded) and cannot be used 
in coregionalization analysis.

Nugget 
+

Sph (4)
+

Linear 
gradient

Nugget 
+

Sph (4)
+

Large 
Patches

We need to work 
with detrended
observations

Effect of spatial drift on variogram
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But also 
interested in 
large-scale
“variation” 
associated with 
spatial drifts



Estimation of spatial drift (1)

1- Estimation of the drift is performed by Generalized 
Least Squares (GLS)
• takes spatial autocorrelation into account
• provides “drift estimates” with higher precision.

2- Global drift estimation: Parametric
Estimate of mj(u) = the value of a function of spatial 
coordinates expressed as:

polynomial of a given degree sum of cosine and sine waves



Estimation of spatial drift (2)

3- Local drift estimation: Nonparametric

mj(u) is locally estimated within a window around each 
sampling location.

Local polynomial of order 0 (i.e., constant), 1 or 2 can be 
used for the estimation procedure

Sampling locations

Moving window

Criteria for choosing window size
Variogram of residuals with the “best” 

fitted model

Choice of window size

Too small? Too large? OK?



Yes

Variables analyzed togetherVariables analyzed together

Pick window 
size with 

smallest SS 
and keep the 
corresponding 

estimates

No

Convergence
?

Separate analysis for each variableSeparate analysis for each variable

For each window size

Estimate drift
First iteration:OLS
Next iterations:GLS

Get residuals

Calculate variogram

Fit model to variogram
Iteration 1: OLS
Next iterations:GLS

Calculate Squared 
Differences (SS)

Calculate pseudo-
r’s or R2s using drift 
estimates directly

ˆ( )m u

Estimate range on all 
direct variograms

Fit LMC to direct and 
cross variograms

Convergence
? No

Yes

Calculate structural 
r’s or R2s using sill 
matrix estimates

ˆ( )R u

Iterative procedure



Simulation results (1)

500 simulations, 2 variables
20x20 grid
Each component with 1/3 of total variation
Nugget + Sph (3) + Linear gradients
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Drift estimation procedures Drift estimation procedures

Structural ρ2s: 0.0, 0.3, 0.6Structural ρ2s: 0.5, 0.5, 0.5



Simulation results (2)

500 simulations, 2 variables
20x20 grid
Each component with 1/3 of total variation
Nugget + Sph (3) + Large patches (Gaussian model)

E
st

im
a
te

d
 R

2
s 

(5
th

, 
9

5
th

)

Drift estimation procedures

Structural ρ2s: 0.5, 0.5, 0.5

Drift estimation procedures

Structural ρ2s: 0.0, 0.3, 0.6



Forest data set (1)

Study on tree species influence on forest floor properties

Explanatory variables: Index of influence for 8 tree species
Response variables: 14 forest floor properties
80 observations in mixed-species stand (Beech-Hemlock-Red 
Maple). Pelletier et al.(1999), Ecoscience, 6(1):79-91

Drifts estimated with moving window using a local 
polynomial of order 1

The LMC was based on a nugget effect and a spherical 
model with an estimated range of 28m.



Forest data set (2)
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Drift: 17.7%

Sph: 31.6%

Nug: 51.7%

Variation explained by tree species

83.4%

40.9%

30.2%



Summary

No unique decomposition for Z(u) = m(u) + R(u)

Drift analysis is conducted jointly with the analysis 
of structural correlations.

Drift estimation takes into account the spatial 
autocorrelation.

Only the pseudo-correlations in the drift analysis 
(i.e., at large scale) result from projections.

The analysis of the random component is done 
within a probabilistic framework.

Inferences can be made about spatial processes 
generating the observed patterns.

Structural correlations are modeled in the LMC.

References can be found in Dutilleul’s presentation (Part 2)


