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As in the second set of analyses, a MSO was computed from a partial RDA that controlled
for the seven pre-selected MEM eigenfunctions. The results of this fourth set of analyses were
almost identical to those shown in Fig. 14.13b: the variogram of the explained plus residual
variation was now entirely within the confidence envelope of the variogram of Yres|W and the
separate variograms of explained and residual variation were flat, showing that the MEM
eigenfunctions successfully controlled for the spatial correlation of the detrended mite data that
was not well explained by the detrended environmental variables. 

The results of this analysis could have differed from Fig. 14.13b if the mite data had been
structured by a broad-scale spatial trend running in a different direction from that of the
environmental data. Had that been the case, the trend in the undetrended response data Y shown
in Fig. 14.13b would not be modelled by the undetrended environmental variables X. However,
the fourth set of analyses described in the present paragraph, with Y and X having been both
detrended, would not have been impaired by these differing trends.

The R code to run the MSO analyses reported in the present ecological application is found
in Section 7.5.3 of Borcard et al. (2011).

14.5 Other eigenfunction-based methods of spatial analysis

This section describes additional statistical methods based on spatial eigenfunctions
that were not covered in the previous sections. 

1 — Space-time interaction

A commonly used approach to test hypotheses about natural or man-made
environmental changes, including climate change, is to sample portions of ecosystems
repeatedly over time. This type of sampling is usually done without replication of
sites; in this way, the sampling effort can be spent on maximizing the expanse of space
covered by the study. If the sampling sites and times are represented by dummy
variables or Helmert contrasts, as in paragraphs 3 and 4 of Subsection 11.1.10, one can
use canonical analysis to study the effect of the sites on species composition while
controlling for the effect of time, and vice versa. An important limit of this approach is
that the interaction between space and time cannot be estimated for lack of replicates.
Assessing that interaction is, however, of great interest in such studies because a
significant interaction would indicate that the spatial structure of the univariate or
multivariate response data has changed through time, and conversely that the temporal
variations differed significantly among the sites, thus indicating, for example, the
signature of climate change on ecosystems. 

Legendre et al. (2010) described a statistical method to analyse the interaction
between the space (S) and time (T) factors in space-time studies without replication;
the acronym of the method is STI (for space-time interaction). The method can be
applied to multivariate response data, e.g. ecological community composition, through
partial RDA. The method consists in representing the space and/or time factors by
spatial and/or temporal eigenfunctions (MEM, Sections 14.1 and 14.2, or AEM,
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Section 14.3). It is not necessary to represent both space and time by eigenfunctions:
for example, if there are many sites and only a few sampling times, e.g. 2 or 3, spatial
relationships may be coded using spatial eigenfunctions and temporal relationships
using dummy variables or Helmert contrasts. Coding the space and/or time factors by
spatial and/or temporal eigenfunctions requires fewer coding variables than dummy
variables or Helmert contrasts. The interaction can be represented by variables
obtained by computing the Hadamard product of each eigenfunction that codes for
space with each eigenfunction that codes for time. Enough degrees of freedom are
saved to correctly estimate the residual fraction of variation and test the significance of
the interaction term. 

The above paper gives details about the computation method. The R package STI is
available to carry out the calculations (Section 14.7). The paper also contains two
applications to real species assemblage data: an analysis of Trichoptera (insects, 56
species) emerging from a stream and captured in 22 emergence traps during 100 days,
grouped into 10 consecutive 10-day periods, and a study of four surveys conducted
between 1982 and 1995 in the Barro Colorado Island permanent forest plot (315
species of trees). Another application is found in Laliberté et al. (2009) where tree
seedling abundances at 40 sites along a transect in a temperate forest understory,
monitored during a 9-year period, were analysed for space-time interaction. The
analysis of spatio-temporal data is also discussed in Cressie & Wikle (2011).

2 — Multiscale codependence analysis

A causal relationship between an explanatory (x) and a response variable (y) across
space implies that the two variables are correlated. When the correlation between x
and y is not significant, the causal hypothesis must be abandoned. Conversely, a
significant correlation can be interpreted as support of the causal hypothesis that x may
have an effect on y. Given the multiscale nature of ecological processes, one may
wonder at which scales x is an important predictor of y. The same question can be
asked about pairs of variables forming a bivariate time series; for simplicity, the
presentation here will focus on space.

Guénard et al. (2010) developed multiscale codependence analysis (MCA) to
address the above question and test the significance of the correlations between two
variables at different spatial scales. The method is based on spatial eigenfunctions,
MEM or AEM, which correspond to different and identifiable spatial scales: indeed, a
Moran’s I statistic (eq. 13.1) can be computed for each eigenfunction. If the sampling
is regular along a transect, eq. 14.1 can be used to determine the wavelegths of the k
eigenfunctions, which are assembled in a matrix called W, of size n × k. Correlation
coefficients are computed between y and each of the k eigenfunctions, and written in a
vector ryW of length k. Similarly, correlation coefficients are computed between x and
each of the k eigenfunctions, and written in a vector rxW. The Hadamard product of
the two vectors, ryW and rxW, is the vector of codependence coefficients, which reflect
the strength of the x-y correlations at the different scales represented by the
eigenfunctions in matrix W. Each codependence coefficient can be tested for
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significance using a * (tau) statistic obtained by computing the product of the t-
statistics associated with the two correlation coefficients. The testing procedure is
described in the paper. An R package is available for the calculations (Section 14.7).

In the above paper, the method was applied to model the river habitat of juvenile
Atlantic salmon (parr). MCA showed that variables describing substrate composition
of the river bed were the most influential predictors of parr abundance at the 0.4 –
4.1 km scales whereas mean channel depth was more influential at the 200 – 300 m
scales. This example shows that when properly assessed, the multiscale structuring
observed in nature may be used to refine our understanding of natural processes.

3 — Estimating and controlling for spatial structure in modelling

The examples and applications reported in Sections 14.1 to 14.3 show that spatial
eigenfunctions can efficiently model all kinds of spatial structures in data. Can they be
used to find a solution to the problem described in Subsection 1.1.2, that spatial
correlation inflates the level of type I error in tests of species-environment
relationships in regression and canonical analysis?

A species-environment relationship after controlling for spatial structure can be
represented by fraction [a] in a Venn diagram (e.g. Figs. 10.10) showing the
partitioning of the variation of response data, univariate y or multivariate Y, with
respect to environmental (left circle) and spatial variables (right circle). A real example
is shown in Fig. 14.7. Using numerical simulations, Peres-Neto & Legendre (2010)
showed that spatial eigenfunctions provided an effective answer to the problem.
Firstly, one must determine if the spatial component of y or Y is significant. This can
be done by regression of y, or canonical analysis of Y, against all MEM spatial
predictors, or by univariate (for y) or multivariate (for Y) variogram analysis.
Secondly, if the spatial component is significant, one can select a subset of spatial
predictors, and use the environmental (X) and the selected spatial predictors
(covariables W) in a partial regression (for y, Subsection 10.3.5) or partial canonical
analysis (for Y, Subsection 11.1.6). 

For the analysis of community composition data, the authors found that a species-
by-species forward selection procedure, described in their paper, was to be preferred to
a global, community-based selection. In this method, eigenfunctions are selected for
each species independently, and the union of the selected sets is used as the matrix of
MEM covariables in canonical analysis. This provides an effective method of control
for type I error in the assessment of species-environment relationships. The paper also
showed that polynomial regressors (Subsection 13.2.1) did not produce tests of
significance with correct levels of type I error.

The Peres-Neto & Legendre (2010) paper provides theoretical support to the effect
observed in Ecological application 14.4, that MEM used as covariables in canonical
analysis effectively controlled for the spatial correlation observed in the species-
environment relationship in the first part of the analysis of the mite data. 




