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1 - Introduction

The general linear model (abbreviated GLM) is a statistical linear model
of the form:

Y = XB + E

where Y is a matrix with n multivariate measurements, X may be a
design matrix or a matrix containing m explanatory variables, B is a
matrix of parameters that are to be estimated, and E is a matrix
containing errors. R function: lm().

The residual matrix U = Y –  is usually assumed to contain normal
error. If the residuals are not multivariate normal, generalized linear
models (also abbreviated GLM; R function glm(); not to be confused
with the general linear model, R function lm()) may be used to relax
assumptions about Y and E.

t-test, ANOVA, MANOVA and (multiple) linear regression are special cases
of the general linear model.

2 - Comparison of sample means by regression

In the study of the comparison of two sample means, Section 3, an
alternative computation method was mentioned: a two-group t-test is
equivalent to a test of the linear regression coefficient between the
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response variable and a dummy (binary) variable representing the two
groups. This was a first application of the principle of equivalence
between the t-test and the test in linear regression, in the framework of
the general linear model. An exercise was proposed in Section 5 of the
Practicals.

We will develop that idea and generalize it to all forms of mean
comparisons.

Dummy variable coding for factors

The one-way analysis-of-variance problem is equivalent to the problem
of explaining the variation in a response variable using a series of
dummy variables coding for the groups. Exactly (k – 1) coding variables
are necessary to represent the membership of the observations into k
groups. 

The naive solution is to represent the membership into k groups by k
dummy variables. It turns out, however, that when k dummy variables
are used, the sum-of-squares-and-cross-products (SSCP) matrix of these
variables is collinear and cannot be inverted by ordinary inversion, (R
function solve()) whereas inverting that matrix is necessary to compute
the regression coefficients; see the lecture on multiple regression.

Consider the following example where k = 3 groups of objects are coded
for regression using 3 dummy (binary, 0-1) variables, plus the column of
‘1’ that are used to estimate the intercept:

Code intercept Binary Gr. 1 Binary Gr. 2 Binary Gr. 3

Group1, replicate1 1 1 0 0

Group1, replicate2 1 1 0 0

Group1, replicate3 1 1 0 0
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That coding, which uses 3 dummy variables, fully and unambiguously
describes the group membership of the observations, but the
corresponding SSCP matrix cannot be inverted (see Practicals). So it
cannot be used in regression analysis.

The following coding also fully and unambiguously describes the group
membership of the observations. It offers the advantage that the
corresponding SSCP matrix can be inverted (see Practicals):

Group1, replicate4 1 1 0 0

Group1, replicate5 1 1 0 0

Group2, replicate1 1 0 1 0

Group2, replicate2 1 0 1 0

Group2, replicate3 1 0 1 0

Group2, replicate4 1 0 1 0

Group2, replicate5 1 0 1 0

Group3, replicate1 1 0 0 1

Group3, replicate2 1 0 0 1

Group3, replicate3 1 0 0 1

Group3, replicate4 1 0 0 1

Group3, replicate5 1 0 0 1

Code intercept Binary Gr. 1 Binary Gr. 2

Group1, replicate1 1 1 0

Group1, replicate2 1 1 0

Group1, replicate3 1 1 0

Group1, replicate4 1 1 0

Group1, replicate5 1 1 0

Code intercept Binary Gr. 1 Binary Gr. 2 Binary Gr. 3
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Any one of the three “Group” columns could have been removed.

Another form of coding, called Helmert contrasts, can be used. For the
example, the coding variables are the following:

Group2, replicate1 1 0 1

Group2, replicate2 1 0 1

Group2, replicate3 1 0 1

Group2, replicate4 1 0 1

Group2, replicate5 1 0 1

Group3, replicate1 1 0 0

Group3, replicate2 1 0 0

Group3, replicate3 1 0 0

Group3, replicate4 1 0 0

Group3, replicate5 1 0 0

Code intercept Helmert 1 Helmert 2

Group1, replicate1 1 2 0

Group1, replicate2 1 2 0

Group1, replicate3 1 2 0

Group1, replicate4 1 2 0

Group1, replicate5 1 2 0

Group2, replicate1 1 –1 1

Group2, replicate2 1 –1 1

Group2, replicate3 1 –1 1

Group2, replicate4 1 –1 1

Group2, replicate5 1 –1 1

Group3, replicate1 1 –1 –1

Code intercept Binary Gr. 1 Binary Gr. 2
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The number of Helmert contrasts necessary to correctly and
unambiguously describes the group membership of the observations is 2;
it is the same as with dummy variables. Helmert contrasts are orthogonal
to each other. They are also centred on mean 0: the column sums are 0.

Regression using Helmert contrasts produces the same R2 as regression
with dummy variables. In crossed ANOVA, however, the use of Helmert
contrasts will be necessarily to correctly code for the interaction.

The coding rule for Helmert contrasts is illustrated by the following
examples:

2 groups: 3 groups: 4 groups: 5 groups: etc.
1 variable 2 variables 3 variables 4 variables

Note: the number of Helmert or binary variables used in the regression
equation is equal to the number of degrees of freedom of the among-
group variation in ANOVA, which is (k – 1).

Function to construct Helmert contrasts in R: contr.helmert(). Other
types of contrasts are available: see ?contr.helmert.

Group3, replicate2 1 –1 –1

Group3, replicate3 1 –1 –1

Group3, replicate4 1 –1 –1

Group3, replicate5 1 –1 –1

Code intercept Helmert 1 Helmert 2

  +1  

  –1  
             

  +2  0

1–   +1  
1– 1–

             

  +3  0 0

1–   +2  0

1– 1–   +1  
1– 1– 1–

             

  +4  0 0 0
1–   +3  0 0

1– 1–   +2  0
1– 1– 1–   +1  

1– 1– 1– 1–
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Applications

In Section 4 of the document on the comparison of two sample means, a
paragraph mentioned that a two-group t-test for related samples is
equivalent to a t-test of the linear regression coefficient between the
response variable and a dummy variable representing the two groups, in
the presence of binary or Helmert covariables representing the related
observations. 

Two exercises are proposed in the Practicals, one using binary variables
to code for the related observations, the other Helmert-coded variables.
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Interaction

In crossed ANOVA, a significant interaction between two factors indicates
that the effects of one of the factors are not consistent across the levels of
the other factor.

With more than one factor, one must represent the main factors using
Helmert contrasts. The interaction dummy variables are the direct
products of the Helmert variables coding for the main factors. Example:

The number of variables representing the interaction is equal to the
number of variables coding for A times the number of variables coding
for B. The Helmert variables representing the main factors A and B are
orthogonal by design of the experiment, since the main factors are
crossed and the design is balanced. The variables representing the

y Factor A Factor B Interaction AxB

y111 2 0 1 2 0

y112 2 0 1 2 0

y121 2 0 –1 –2 0

y122 2 0 –1 –2 0

y211 –1 1 1 –1 1

y212 –1 1 1 –1 1

y221 –1 1 –1 1 –1

y222 –1 1 –1 1 –1

y311 –1 –1 1 –1 –1

y312 –1 –1 1 –1 –1

y321 –1 –1 –1 1 1

y322 –1 –1 –1 1 1
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interaction are orthogonal among themselves. By construction, they are
also orthogonal to the variables representing the main factors A and B.

Application

We can use this form of coding to revisit the rat feeding example, where
12 rats, males and females, were fed fresh and rancid lard (pig fat). The
response variable recorded how much fat (in g) each rat had eaten. The
data can be coded using Helmert contrasts for the main factors, and from
them, the interaction variables can be constructed:

These data will be analysed in the Practicals and the results compared to
the regular ‘aov’ results.

Consumption =

709

Sex =

+1

Lard =

+1

Interaction =

+1
679 +1 +1 +1
699 +1 +1 +1
592 +1 –1 –1
538 +1 –1 –1
476 +1 –1 –1
657 –1 +1 –1
594 –1 +1 –1
677 –1 +1 –1
508 –1 –1 +1
505 –1 –1 +1
539 –1 –1 +1



Two-way anova with interaction computed in R 
 
# Two-way anova with replication, Model I (two fixed factors) 
 
# Rats data 
 
Consumption = c(709, 679, 699, 592, 538, 476, 657, 594, 677, 508, 505, 539) 
Sex  = gl(2,6) 
Lard = gl(2, 3, length=12) 
 
Sex 
# [1] 1 1 1 1 1 1 2 2 2 2 2 2 
# Levels: 1 2 
Lard 
# [1] 1 1 1 2 2 2 1 1 1 2 2 2 
# Levels: 1 2 
 
# 1. Two-way anova using the aov() function of the stats package (parametric tests) 
 
aov.res4 = aov(Consumption ~ Sex*Lard) 
 
summary(aov.res4) 
#             Df Sum Sq Mean Sq F value    Pr(>F)     
# Sex          1   3781    3781  2.5925 0.1460358     
# Lard         1  61204   61204 41.9685 0.0001925 *** 
# Sex:Lard     1    919     919  0.6300 0.4502546     
# Residuals    8  11667    1458                       
 
# 2. Two-way anova by RDA using the rda() function of the vegan package (permutation tests) 
 
# 2.1. Construct the matrix of Helmert contrasts. Remove the first column (intercept).  
  
helmert = model.matrix(~ Sex*Lard, contrasts=list(Sex="contr.helmert", 
Lard="contr.helmert"))[,-1] 
 
# 2.2. Test the interaction by RDA. Factors Sex and Lard form the matrix of covariables.  
  
interaction.rda = rda(Consumption, helmert[,3], helmert[,1:2])  
anova(interaction.rda, step=10000, perm.max=10000)   
 
# Permutation test for rda under reduced model 
# Model: rda(X = Consumption, Y = helmert[, 3], Z = helmert[, 1:2]) 
#          Df     Var    F N.Perm Pr(>F) 
# Model     1   83.52 0.63   9999 0.4404 
# Residual  8 1060.61                    
  
# F = 0.6300, p = 0.4404 
  



# 2.3. Test the main factor Sex by RDA. Lard and the interaction form the matrix of covariables. 
  
Sex.rda = rda(Consumption, helmert[,1], helmert[,2:3])  
anova(Sex.rda, step=10000, perm.max=10000)  
 
# Model: rda(X = Consumption, Y = helmert[, 1], Z = helmert[, 2:3]) 
#          Df    Var      F N.Perm Pr(>F) 
# Model     1  343.7 2.5925   9999 0.1435 
# Residual  8 1060.6                      
 
# F = 2.5925, p = 0.1435 
  
# 2.4. Test the main factor Lard by RDA. Sex and the interaction form the matrix of covariables. 
  
Lard.rda = rda(Consumption, helmert[,2], helmert[,c(1,3)])  
anova(Lard.rda, step=10000, perm.max=10000)  
 
# Model: rda(X = Consumption, Y = helmert[, 2], Z = helmert[, c(1, 3)]) 
#          Df    Var      F N.Perm Pr(>F)     
# Model     1 5564.0 41.968    999  0.001 *** 
# Residual  8 1060.6                          
 
# F = 41.968, p = 0.0016 
  
# 2.5. Compute the R-square corresponding to the amount of variation of Consumption explained 
by each of the main factors  
 
Sex.rda     # Summary of the RDA results for factor Sex 
 
# Call: rda(X = Consumption, Y = helmert[, 1], Z = helmert[, 2:3]) 
#                 Inertia Proportion Rank 
# Total         7.052e+03  1.000e+00      
# Conditional   5.648e+03  8.009e-01    2 
# Constrained   3.437e+02  4.874e-02    1  <= R2 = 0.04874 
# Unconstrained 1.061e+03  1.504e-01    1 
# Inertia is variance  
 
-------- 
 
Lard.rda rda     # Summary of the RDA results for factor Lard 
 
# Call: rda(X = Consumption, Y = helmert[, 2], Z = helmert[, c(1, 3)]) 
#                 Inertia Proportion Rank 
# Total         7.052e+03  1.000e+00      
# Conditional   4.272e+02  6.058e-02    2 
# Constrained   5.564e+03  7.890e-01    1  <= R2 = 0.7890 
# Unconstrained 1.061e+03  1.504e-01    1 
# Inertia is variance  
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3 - Regression using quantitative and ‘factor’ explanatory variables

Regression analysis (R function lm()) can use combinations of
quantitative and qualitative (‘factor’) explanatory variables. The analysis
can contain several quantitative and several ‘factor’ explanatory
variables. If an interaction between factors is included in the analysis,
make sure it is represented by products of Helmert contrasts.

The analysis of covariance (ANCOVA) is a mixed analysis of this type,
involving quantitative and qualitative (‘factor’) explanatory variables. In
R, it can be computed by lm(), which accepts combinations of
quantitative and ‘factor’ variables. In ANCOVA, one is particularly
interested in determining the interplay between the quantitative
explanatory variable(s) and the factor(s). By testing the difference
between nested models, one can check if the response can be modelled 

• by a single model of the quantitative variable(s), 

• by models that differ in their intercepts, depending on the level of the
factor(s), but have the same slope,

• by models that differ in their slopes, depending on the level of the
factor(s), but have the same intercept or centroid,

• or by entirely different linear models.

The analysis of covariance will not be developed further in this
Workshop. Please consult advanced textbooks on ANCOVA.
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4 - Generalized linear model

The generalized linear model (GLM; Nedler and Wedderbum 1972*) is a
flexible generalization of ordinary least squares regression. The
generalization is obtained by allowing the linear model to be related to
the response variable via a link function and by allowing the magnitude
of the variance of each measurement to be a function of its predicted
value.

R function: glm().

The general linear model, logistic regression, and Poisson regression are
special cases of the generalized linear model.

*  Nelder, J. and R. Wedderburn. 1972. Generalized linear models. Journal of the Royal
Statistical Society, Series A (General) 135: 370–384.



Analysis of variance by canonical redundancy analysis (RDA) 

Examples of complex analyses of variance for species data 

Hooper, E., R. Condit and P. Legendre. 2002. Responses of 20 native tree species to reforestation 
strategies for abandoned farmland in Panama. Ecological Applications 12: 1626-1641. [PDF 
available on the Web page   http://www.bio.umontreal.ca/legendre/reprints/ ] 
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FIG. 6. Ordination biplot illustrating the significant (P , 0.001) effect of Saccharum treatment on the relative height
growth (RHT) of 16 tree species in the wet season, between May and July 1997. Same-letter superscripts indicate no significant
difference (P , 0.05) based on post hoc analysis. Saccharum treatment explained 19.8% of the variance between species,
with the first and second axes explaining 11.2% and 4.5%, respectively. Arrows indicate treatments and lines indicate species
vectors. Codes associated with each species are listed in Table 1, and the symbols match Fig. 2.

relatively high performance in the Saccharum control
(Table 4). We conclude that the Saccharum did not
completely limit their regeneration. A reforestation ef-
fort starting with seed and minimal pre-sowing treat-
ment is likely to succeed with these large-seeded,
shade-tolerant species.

Fires burn yearly in the dry season in these Sac-
charum-dominated grasslands, and our data show that
these wildfires are also a major barrier to tree regen-
eration. Fire killed most species and significantly low-
ered the germination of all except Trema and Byrson-
ima (but those two cannot compete with established
Saccharum). Resprouting from cut stems or stumps is
a very common mechanism for reestablishment follow-
ing disturbance (Aide et al. 1995), and we found that
seedlings of several large-seeded species (Carapa, Dip-
teryx, Virola, Ormosia, and Calophyllum) could re-
sprout following fire. Recurring fires, as a result of
grass invasion following pasture abandonment, arrest
natural tree regeneration in abandoned pastures at other
Neotropical sites as well (Janzen 1988, Nepstad et al.
1990, Aide and Cavelier 1994).

Management suggestions

Fire is a major barrier to tree regeneration at our
sites, limiting both establishment and species diversity.
We therefore recommend the establishment of fire-
breaks, which have also been an integral part of re-
forestation strategies in Costa Rica (Janzen 1988) and
the Amazon (Nepstad et al. 1990). The breaks must be
large for effective fire protection because the flame
height of Saccharum wildfires can reach .15 m.

Many alternatives have been suggested for forest res-
toration throughout the wet tropics. These range, in
order of increasing cost, from simply allowing natural
regeneration to proceed, to planting seeds or seedlings
to assist natural regeneration, through establishing tree
plantations and allowing recruitment of tree seedlings
below them (Brown and Lugo 1994, Guariguata et al.
1995, Kuusipalo et al. 1995). Our goal was to find a
low-cost strategy for extensive forest restoration in
abandoned Panamanian farmland, and our results sug-
gest that even with the removal of fire, natural tree
regeneration will not proceed unassisted because the
Saccharum poses a formidable barrier to the small-
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APPENDIX A

Summary of repeated-measures ANOVA on tree seedling germination, abundance, survival, height, and relative height
growth (RHT).

Source

Germination†

df F

Abundance†

df F

Survival†

df F

Height‡

df F

RHT‡

df F

Between subjects
Distance
Site 3 distance
Treatment
Treatment 3 distance
Site 3 treatment 1

Site 3 treatment 3 distance

2
4§
4
8

24\

0.52

11.68**
0.69

2

4
8

3.39

13.04**
0.45

2

4
8

1.11

2.79*
0.43

2

4
8

3.52

3.22**
0.22

2

4
8

4.77

4.86**
0.58

Within subjects
Time
Time 3 distance
Time 3 site 3 distance
Time 3 treatment
Time 3 treatment 3 distance

2
4
8§
8

16

36.31**
0.59

1.84
0.92

3
6

12
24

80.73**
1.01

2.82**
0.80

2
4

8
16

1.71
0.15

1.09
0.74

2
4

8
16

5.68**
2.17

1.08
0.36

2
4

8
16

0.86
0.13

0.26
1.08

Time 3 site 3 treatment 1
Time 3 site 3 treatment 3 distance

48\

Notes: The analysis followed a repeated-measures, split-plot design. Sources of variation included distance from the forest
as the main plot factor (distance), shading and mowing treatments of the Saccharum as the subplot factor (treatment), and
their interactions. Site was included as a blocking factor.

* P , 0.05; ** P , 0.01.
† Sample size: n 5 45 subjects (i.e., 45 unburned subplots).
‡ Sample size: n 5 371 subjects (i.e., 371 seedlings were present over all three time periods in the 45 unburned subplots).
§ Main plot error.
\ Subplot error.

APPENDIX B

Summary of RDA in a MANCOVA-like design on matrices of germination per species
per subplot per time period (germination) or relative growth rates for height (RHT) per
species per subplot per time period.

Source

Germination

df† F

RHT

df‡ F

Site
Distance
Treatment
Treatment 3 distance
Time
Time 3 distance
Time 3 treatment
Time 3 treatment 3 distance

2
2
4
8
3
6

12
24

1.03
2.89**
0.70

31.51**
1.01
1.81**
0.72

2
2
4
8
1
2
4
8

1.41
4.67**
1.25

12.08**
2.46*
2.85**
1.36

Notes: Sources of variation included distance from the forest (distance), shading and mowing
treatments of the Saccharum (treatment), time, and their interactions. Site and the interaction
of site with all main factors and interactions were used as covariables.

* P , 0.05; ** P , 0.01 (determined using permutation testing).
† For all factors and interactions, denominator df 5 60.
‡ For all factors and interactions, denominator df 5 16.




