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Outline 
1. Canonical redundancy analysis, RDA 

Pages from Chapter 11 of: Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English 
edition. Elsevier Science BV, Amsterdam. xv + 853 pages. 

Two strategies can be used to analyse community composition data tables: 

• Transformation-based RDA (tb-RDA): 

Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination 
of species data. Oecologia 129: 271-280. 

• Distance-based RDA (db-RDA): 

Legendre, P. and M. J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies 
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24. 

2. Canonical correspondence analysis, CCA 

Pages from Chapter 11 of: Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English 
edition. Elsevier Science BV, Amsterdam. xv + 853 pages. 

3. Tests of significance in canonical analysis: see Permutation_test_summary.pdf  

In the presence of covariables, the tests of significance in regression and canonical analysis 
involve permutations of the residuals of a null model or a full model. The theory is explained in: 

Anderson, M. J. and P. Legendre. 1999. An empirical comparison of permutation methods for 
tests of partial regression coefficients in a linear model. Journal of Statistical Computation 
and Simulation 62: 271-303. 

4. Partial RDA and CCA: see PowerPoint presentation, slides 5-7. 

5. Manova computed by RDA 

A single factor is coded using dummy variables. Two or more orthogonal factors are coded using 
Helmert contrasts. How to obtain the interaction is described in Appendix C of: 

Legendre, P. and M. J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies 
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24. 

Practicals: Practicals_in_R.pdf, pp. 15-22. 



Chapter

11 Canonical analysis

11.0 Principles of canonical analysis

Canonical analysis is the simultaneous analysis of two, or eventually several data
tables. It allows ecologists to perform a direct comparison of two data matrices
(“direct gradient analysis”; Fig. 10.4, Table 10.1). Typically, one may be interested in
the relationship between a first table describing species composition and a second table
of environmental descriptors, observed at the same locations; or, say, a table about the
chemistry of lakes and another about drainage basin geomorphology.

In indirect comparison (indirect gradient analysis; Section 10.2, Fig. 10.4), the
matrix of explanatory variables X does not intervene in the calculation producing the
ordination of Y. Correlation or regression of the ordination vectors on X are computed
a posteriori. In direct comparison analysis, on the contrary, matrix X intervenes in the
calculation, forcing the ordination vectors to be maximally related to combinations of
the variables in X . This description applies to all forms of canonical analysis and in
particular to the asymmetric forms described in Sections 11.1 to 11.3. There is a
parallel in cluster analysis, when clustering results are constrained to be consistent
with temporal (Subsection 12.6.4) or spatial relationships (Subsection 13.3.2) among
observations, which are inherent to the sampling design. When using a constraint
(clustering, ordination), the results should differ from those of unconstrained analysis
and be, hopefully, more readily interpretable. Thus, direct comparison analysis allows
one to directly test a priori ecological hypotheses by (1) bringing out all the variance
of Y that is related to X and (2) allowing formal tests of these hypotheses to be
performed, as detailed below. Further examination of the unexplained variability may
help generate new hypotheses, to be tested using new field observations (Section 13.5).

In mathematics, a canonical form (from the Greek κανων, pronounced “kanôn”,
rule) is the simplest and most comprehensive form to which certain functions,
relations, or expressions can be reduced without loss of generality. For example, the
canonical form of a covariance matrix is its matrix of eigenvalues. In general, methods
of canonical analysis use eigenanalysis (i.e. calculation of eigenvalues and
eigenvectors), although some extensions of canonical analysis have been described
that use multidimensional scaling (MDS) algorithms (Section 9.3).

Canonical
form
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Canonical analysis combines the concepts of ordination and regression. It involves
a response matrix Y and an explanatory matrix X (names used throughout this
chapter). Like the other ordination methods (Chapter 9; Fig. 11.1a), canonical analysis
produces (usually) orthogonal axes from which scatter diagrams may be plotted.

Figure 11.1 Relationships between (a) ordination, (b) regression, and (c) the asymmetric forms of canonical
analysis (RDA and CCA). In (c), each canonical axis of Y is constrained to be a linear
combination of the explanatory variables X.
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Canonical analysis has become an instrument of choice for ecological analysis. A
1994 bibliography of ecological papers on the subject already contained 379 titles
(Birks et al., 1994). CCorA and discriminant analysis are readily available in most
major statistical packages. For RDA and CCA, one must rely on specialized ordination
packages. The most widely used program is CANOCO* (ter Braak, 1988b). A closely
related procedure, called ACPVI (principal component analysis with instrumental
variables), is available in the ADE-4 package† (Thioulouse et al., 1996).

11.1 Redundancy analysis (RDA)

Redundancy analysis (RDA) is the direct extension of multiple regression to the
modelling of multivariate response data. Redundancy is synonymous with explained
variance (Gittins, 1985). The analysis is asymmetric: Y is the table of response
variables and X is the table of explanatory variables. Looking at the matter from a
descriptive perspective, one would say that the ordination of Y is constrained in such a
way that the resulting ordination vectors are linear combinations of the variables in X.
The difference between RDA and canonical correlation analysis (CCorA,
Section 11.4) is the same as that between simple linear regression and linear
correlation analysis. RDA may also be seen as an extension of principal component
analysis (Section 9.1), because the canonical ordination vectors are linear
combinations of the response variables Y. This means that each ordination vector is a
one-dimensional projection of the distribution of the objects in a space that preserves
the Euclidean distances (D1, Chapter 7) among them. These ordination vectors differ,
of course, from the principal components that could be computed on the Y data table,
because they are also constrained to be linear combinations of the variables in X.

Redundancy analysis was first proposed by Rao (1964); in his 1973 book (p. 594-
595), he proposed the problem as an exercise at the end of his Chapter 8 on
multivariate analysis. The method was later rediscovered by Wollenberg (1977).

The eigenanalysis equation for redundancy analysis 

(SYX S–1
XX S'YX – λkI) uk = 0 (11.3)

*  CANOCO, which contains procedures for both RDA and CCA, was written by C. J. F. ter Braak
who also developed CCA. Distribution: see Table 13.4, p. 784.

The package PC-ORD contains a procedure for CCA. Distribution: see footnote in Section 9.3.

RDACCA is a FORTRAN program for RDA and CCA written by P. Legendre. It is distributed free
of charge from the WWWeb site: <http://www.fas.umontreal.ca/BIOL/legendre/>. It uses the
direct eigenanalysis methods described in Subsections 11.1.1(for RDA) and 11.2.1 (for CCA).
†  The ADE-4 package (for Macintosh and Windows) was written by D. Chessel and
J. Thioulouse at Université de Lyon, France. It is distributed free of charge from the following
WWWeb site: <http://biomserv.univ–lyon1.fr/ADE–4.html>.

Redundancy

legendre
(SYX S–1
XX S'YX – lkI) uk = 0
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may be derived through multiple linear regression, followed by principal component
decomposition (Fig. 11.2). This way of looking at the calculations makes it intuitively
easy to understand what RDA actually does to the data. It also shows that the
computations can be carried out using any standard general statistical package for
micro-computer or mainframe, provided that multiple regression and principal
component analysis are available; the procedure is also easy to program using
advanced languages such as MATLAB or S-PLUS. RDA is appropriate when the
response data table Y could be analysed, alone, by principal component analysis
(PCA); in other words, when the y variables are linearly related to one another and the
Euclidean distance is deemed appropriate to describe the relationships among objects
in factorial space. The data matrices must be prepared as follows, prior to RDA.

1. The table of response variables Y is of size (n × p), where n is the number of objects
and p is the number of variables. Centre the response variables on their means, or
standardize them by column if the variables are not dimensionally homogeneous
(e.g. a mixture of temperatures, concentrations, pH values, etc.), as one would do prior
to PCA. Centring at this early step simplifies several of the equations from 11.4 to
11.12 in which, otherwise, the centring of the columns of matrix Y should be specified.

2. Table X of the explanatory variables is of size (n × m) with m ≤ n. The variables are
centred on their respective means for convenience; centring the variables in X and Y
has the effect of eliminating the regression intercepts, thus simplifying the
interpretation without loss of pertinent information. The X  variables may also be
standardized (eq. 1.12). This is not a necessary condition for a valid redundancy
analysis, but removing the scale effects of the physical dimensions of the explanatory
variables (Subsection 1.5.4) turns the regression coefficients into standard regression
coefficients which are comparable to one another. The amount of explained variation,
as well as the fitted values of the regression, remain unchanged by centring or
standardization of the variables in X. In the program CANOCO, for instance,
standardization is automatically performed for the explanatory variables (matrix X)
when computing RDA or CCA.

The distributions of the variables should be examined at this stage, as well as
bivariate plots within and between the sets Y and X. Transformations (Section 1.5)
should be applied as needed to linearize the relationships and make the distributions
more symmetric, reducing the effect of outliers.

If X  and Y are made to contain the same data (i.e. X = Y), eq. 11.3 becomes
(SYY – λkI) uk = 0, which is the equation for principal component analysis (eq. 9.1).
The result of RDA is then a principal component analysis of that data table.

1 — The algebra of redundancy analysis

The following algebraic development describes how to arrive at eq. 11.3 through
multiple regression and principal component analysis. The steps are (Fig. 11.2):
(1) regress each variable in Y on all variables in X and compute the fitted values;
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Figure 11.2 Redundancy analysis may be understood as a two-step process: (1) regress each variable in Y on
all variables in X and compute the fitted values; (2) carry out a principal component analysis of
the matrix of fitted values to obtain the eigenvalues and eigenvectors. Two ordinations are
obtained, one (YU) in the space of the response variables Y, the other in the space of the
explanatory variables X. Another PCA ordination can be obtained using the matrix of residuals.
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(2) carry out a principal component analysis on the matrix of fitted values to obtain the
eigenvalues and eigenvectors.

1) For each response variable in table Y, compute a multiple linear regression on
all variables in table X. This may be done using any general-purpose statistical
package. The matrix equation corresponding to each regression is (eq. 2.19):

b = [X'X]–1 X'y 

so that the matrix equation corresponding to the whole set of regressions (i.e. for all
response variables) is 

B = [X'X]–1 X'Y (11.4)

where B is the matrix of regression coefficients of all response variables Y on the
regressors X. Computing all linear regressions simultaneously has been called
multivariate linear regression by Finn (1974) and is available, for instance, in the SAS
procedure GLM.

In multiple regression, the fitted values  are computed as:

 = X B (11.5)

This is the multivariate extension of eq. 10.1. The whole table of fitted values, , may
be computed in a single matrix operation in this way. Using B estimated by eq. 11.4,
eq. 11.5 becomes:

 = X [X' X]–1 X' Y (11.6)

Because variables X and Y are centred on their respective means, there is no intercept
parameter in the B vectors. The  vectors are centred, as is always the case in
ordinary linear regression. If m = n, X is square; in that case, the multiple regressions
always explain the variables in matrix Y entirely, so that  = Y. Using property 5 of
matrix inverses (Section 2.8), one can indeed verify that eq. 11.6 gives  = Y when X
is square.

2) The covariance matrix corresponding to the table of fitted values  is computed
from eq. 4.6:

 = [1/(n–1)] (11.7)

Replacing  by the expression from eq. 11.6, eq. 11.7 becomes:

 = [1/(n–1)] Y' X [X' X]–1 X' X [X' X]–1 X' Y (11.8)
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This equation reduces to:

 =  SYX S–1
XX S'YX (11.9)

where SYY is the (p × p) covariance matrix among the response variables, SXX the
(m  × m) covariance matrix among the regressors (it is actually a matrix RXX if all the
X variables have been standardized, as suggested above), and SYX is the (p × m)
covariance matrix among the variables of the two sets; its transpose S'YX = SXY is of
size (m × p). If the Y variables had also been standardized, this equation would read
RYX R–1

XX R'YX, which is the equation for the coefficient of multiple determination
(eq. 4.31).

3) The table of fitted values  is subjected to principal component analysis to
reduce the dimensionality of the solution. This corresponds to solving the eigenvalue
problem:

(  – λkI) uk = 0 (11.10)

which, using eq. 11.9, translates into:

(SYX S–1
XX S'YX – λkI) uk = 0 (11.11)

This is the equation for redundancy analysis (eq. 11.3); it may also be obtained from
the equation for canonical correlation analysis (eq. 11.22), by defining S11 = SYY = I
(Rao, 1973; ter Braak, 1987c). Different programs may express the eigenvalues in
different ways: raw eigenvalues, fraction of total variance in matrix Y, or percentage;
see Tables 11.2 and 11.4 for examples.

The matrix containing the normalized canonical eigenvectors uk is called U . The
eigenvectors give the contributions of the descriptors of  to the various canonical
axes. Matrix U , of size (p × p), contains only min[p, m, n – 1] eigenvectors with non-
zero eigenvalues, since the number of canonical eigenvectors cannot exceed the
minimum of p, m and (n – 1):

• It cannot exceed p which is the size of the reference space of matrix Y. This is
obvious in multiple regression, where matrix Y contains a single variable; the
ordination given by the fitted values  is, consequently, one-dimensional.

• It cannot exceed m which is the number of variables in X . Consider an extreme
example: if X contains a single explanatory variable (m = 1), regressing all p variables
in Y on this single regressor produces p fitted vectors  which all point in the same
direction of the space; a principal component analysis of matrix  of these fitted
vectors can only produce one common (canonical) variable.

• It cannot exceed (n – 1) which is the maximum number of dimensions required to
represent n points in Euclidean space.
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Ŷ
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The canonical coefficients in the normalized matrix U give the contributions of the
variables of  to the canonical axes. They should be interpreted as in PCA. For
biplots (discussed below), matrix U  can be rescaled in such a way that the length of
each eigenvector is , using eq. 9.9.

4) The ordination of objects in the space of the response variables Y can be
obtained directly from the centred matrix Y, using the standard equation for principal
components (eq. 9.4) and matrix U  of the eigenvectors uk found in eq. 11.11:

F = YU (11.12)

The ordination vectors (columns of F) defined in eq. 11.12 are called the vectors of
“site scores”. They have variances that are close, but not equal to the corresponding
eigenvalues. How to represent matrix F in biplot diagrams is discussed in point 8
(below).

5) Likewise, the ordination of objects in space X is obtained as follows:

Z = U  = XB U (11.13)

As stated above, the vectors in matrix  are centred on their respective means. The
right-hand part of eq. 11.13, obtained by replacing  by it value in eq. 11.5, shows
that this ordination is a linear combinations of the X variables. For that reason, these
ordination vectors (columns of matrix Z) are also called “fitted site scores”, or “sample
scores which are linear combinations of environmental variables” in program
CANOCO. The ordination vectors, as defined in eq. 11.13, have variances equal to the
corresponding eigenvalues. The representation of matrix Z in biplot diagrams is
discussed in point 8 (below).

The “site scores” of eq. 11.12 are obtained by projecting the original data
(matrix Y) onto axis k; they approximate the observed data, which contain residuals
( , Fig. 11.2). On the other hand, the “fitted site scores” of eq. 11.13 are
obtained by projecting the fitted values of the multiple regressions (matrix ) onto
axis k; they approximate the fitted data. Either set may be used in biplots. The practical
difference between “site scores” and “fitted site scores” is further discussed in the
second example below and in the numerical example of Section 13.4.

6) The correlation rk between the ordination vectors in spaces Y (from eq. 11.12)
and X (from eq. 11.13) for dimension k is called the “species-environment correlation”
in program CANOCO. It measures how strong the relationship is between the two data
sets, as expressed by each canonical axis k. It should be interpreted with caution
because a canonical axis with high species-environment correlation may explain but a
small fraction of the variation in Y, which is given by the amount (or proportion) of
variance of matrix Y explained by each canonical axis; see example in Table 11.2.
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7) The last important information needed for interpretation is the contribution of
the explanatory variables X to the canonical ordination axes. Either the regression or
the correlation coefficients may be considered:

• Matrix C of the canonical coefficients,

C = B U (11.14)

gives directly the weights of the explanatory variables X in the formation of the matrix
of fitted site scores. The ordination of objects in the space of the explanatory variables
can be found directly by computing XC; these vectors of site scores are the same as in
eq. 11.13. The coefficients in the columns of matrix C are identical to the regression
coefficients of the ordination scores from eq. 11.13 on the matrix of standardized
explanatory variables X; they may thus be interpreted in the same way.

• Correlations may also be computed between the variables in X, on the one hand, and
the ordination vectors, in either space Y (from eq. 11.12) or space X (from eq. 11.13),
on the other. The correlations between X and the ordination vectors in space X are
used to represent the explanatory variables in biplots.

8) In RDA, biplot diagrams may be drawn that contain two sets of points, as in
PCA (Subsection 9.1.4), or three sets: site scores (matrices F or Z, from eqs. 11.12 and
11.13), response variables from Y, and explanatory variables from X. Each pair of sets
of points forms a biplot. Biplots help interpret the ordination of objects in terms of Y
and X. When there are too many objects, or too many variables in Y or X, separate
ordination diagrams may be drawn and presented side by side. The construction of
RDA biplot diagrams is explained in detail in ter Braak (1994); his conclusions are
summarized here. As in PCA, two main types of scalings may be used (Table 9.2):

• RDA scaling type 1 — The eigenvectors in matrix U, representing the scores of the
response variables along the canonical axes, are scaled to lengths 1*. The site scores in
space X are obtained from equation Z =  (eq. 11.13); these vectors have variances
equal to . The site scores in space Y are obtained from equation F  = YU; the
variances of these vectors are usually slightly larger than  because Y contains both
the fitted and residual components and has thus more total variance than . Matrices
Z and U, or F and U, can be used together in biplots because the products of the
eigenvectors with the site score matrices reconstruct the original matrices perfectly:

*  In CANOCO 3.1, RDA scaling –1 produces a matrix U with vectors (“species scores”) scaled to
lengths  (or  in CANOCO 4.0), instead of 1, if all species and site weights are equal. In
both versions of CANOCO, the site scores in space X (matrix Z) are scaled to lengths  (or,
in other words, to sums of squares of ); the site scores in space Y (matrix F) have lengths
slightly larger than . For RDA, CANOCO expresses the eigenvalues as fractions of the total
variance in Y. As a result, site scores in matrices F and Z, as described in the present Section
(zhere), are related to site scores given by CANOCO (zCANOCO) through the formula: 
zCANOCO = zhere . Changing the scaling of species and site
score vectors by any multiplicative constant does not change the interpretation of a biplot.

Biplot

Scalings
in RDA

n p
n λk

nλ k
nλ k

n n 1–( ) Total variance inY( )⁄

ŶU
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ZU' =  and FU' = Y, as in PCA (Subsection 9.1.4). A quantitative explanatory
variable x may be represented in the biplot using the correlations of x with the fitted
site scores. Each correlation is multiplied by  where  is the
eigenvalue of the corresponding axis k; this correction accounts for the fact that, in this
scaling, the variances of the site scores differ among axes. The correlations were
obtained in calculation step 7 above.

The consequences of this scaling, for PCA, are summarized in the right-hand
column of Table 9.2. This scaling, called distance biplot, allows the interpretation to
focus on the ordination of objects because the distances among objects approximate
their Euclidean distances in the space of response variables (matrix Y). 

The main features of a distance biplot are the following: (1) Distances among
objects in a biplot are approximations of their Euclidean distances. (2) Projecting an
object at right angle on a response variable y approximates the value of the object
along that variable, as in Fig. 9.3a. (3) The angles among variables y are meaningless.
(4) The angles between variables x and y in the biplot reflect their correlations.
(5) Binary explanatory x variables may be represented as the centroids of the objects
possessing state “1” for that variable. Examples are given in Subsection 2. Since a
centroid represents a “mean object”, its relationship to a variable y is found by
projecting it at right angle on the variable, as for an object. Distances among centroids,
and between centroids and individual objects, approximate Euclidean distances.

• RDA scaling type 2 — Alternatively, one obtains response variable scores by
rescaling the eigenvectors in matrix U to lengths , using the transformation
UÒ1/2*. The site scores in space X obtained for scaling 1 (eq. 11.13) are rescaled to
unit variances using the transformation ZÒ–1/2. The site scores in space Y obtained for
scaling 1 are rescaled using the transformation FÒ–1/2; the variances of these vectors
are usually slightly larger than 1 for the reason explained in the case of scaling 1.
Matrices Z and U, or F and U, as rescaled here, can be used together in biplots because
the products of the eigenvectors with the site score matrices reconstruct the original
matrices perfectly: ZU' =  and FU ' = Y, as in PCA (Subsection 9.1.4). A quantitative
explanatory variable x may be represented in the biplot using the correlations of x with
the fitted site scores, obtained in calculation step 7 above. 

*  In CANOCO 3.1, RDA scaling –2 produces a matrix U with vectors (“species scores”) scaled to
lengths  (or  in CANOCO 4.0), instead of , if all species and site weights are
equal. For RDA, CANOCO expresses the eigenvalues as fractions of the total variance in Y. As a
result, the values in matrix U as described here (uhere) are related to the “species scores” of
CANOCO 3.1 (uCANOCO 3.1) through the formula: uCANOCO 3.1 = uhere , or
uCANOCO 4.0 = uhere  in CANOCO 4.0. In both versions of CANOCO, the
site scores in space X (matrix Z) are scaled to lengths  instead of ; the site scores in
space Y (matrix F) have lengths slightly larger than . Site scores in matrices F and Z, as
described in the present Section (zhere), are related to site scores given by CANOCO (zCANOCO)
through the formula: zCANOCO = zhere . Changing the scaling of species and site
score vectors by any multiplicative constant does not change the interpretation of a biplot.
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The consequences of this scaling, for PCA, are summarized in the central column
of Table 9.2. This scaling, called correlation biplot, is appropriate to focus on the
relationships among response variables (matrix Y). 

The main features of a correlation biplot are the following: (1) Distances among
objects in the biplot are not approximations of their Euclidean distances. (2) Projecting
an object at right angle on a response variable y approximates the value of the object
along that variable. (3) The angles between variables (from sets X and Y) in the biplot
reflect their correlations. (4) Projecting an object at right angle on a variable x
approximates the value of the object along that variable. (5) Binary explanatory
variables may be represented as described above. Their interpretation is done in the
same way as in scaling type 1, except for the fact that the distances in the biplot among
centroids, and between centroids and individual objects, do not approximate Euclidean
distances.

The type of scaling depends on the emphasis one wants to give to the biplot, i.e.
display of distances among objects or of correlations among variables. When most
explanatory variables are binary, scaling type 1 is probably the most interesting; when
most of the variables in set X are quantitative, one may prefer scaling type 2. When the
first two eigenvalues are nearly equal, both scalings lead to nearly the same biplot.

9) Redundancy analysis usually does not completely explain the variation in the
response variables (matrix Y). During the regression step (Fig. 11.2), regression
residuals may be computed for each variable y; the residuals are obtained as the
difference between observed values yij and the corresponding fitted values  in
matrix . The matrix of residuals (Yres in Fig. 11.2) is also a matrix of size (n × p).
Residuals may be analysed by principal component analysis, leading to min[p, n – 1]
non-canonical eigenvalues and eigenvectors (Fig. 11.2, bottom). So, the full analysis
of matrix Y (i.e. the analysis of fitted values and residuals) may lead to more
eigenvectors than a principal component analysis of matrix Y: there is a maximum of
min[p, m, n – 1] non-zero canonical eigenvalues and corresponding eigenvectors, plus
a maximum of min[p, n – 1] non-canonical eigenvalues and eigenvectors, the latter
being computed from the matrix of residuals (Table 11.1). When the variables in X are
good predictors of the variables in Y, the canonical eigenvalues may be larger than the
first non-canonical eigenvalues, but this need not always be the case. If the variables in
X are not good predictors of Y, the first non-canonical eigenvalues, computed on the
residuals, may be larger than their canonical counterparts.

In the trivial case where Y contains a single response variable, redundancy analysis
is nothing but multiple linear regression analysis.

2 — Numerical examples

As a first example, consider again the data set presented in Table 10.5. The first five
variables are assembled into matrix Y and the three spatial variables make up matrix
X. Calculations performed as described above, or using the iterative algorithm

Correlation
biplot

ŷij
Ŷ
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described in the next subsection, lead to the same results (Table 11.2). There are
min[5, 3, 19] = 3 canonical eigenvectors in this example and 5 non-canonical PCA
axes computed from the residuals. This is a case where the first non-canonical
eigenvalue is larger than any of the canonical eigenvalues. The ordination of objects
along the canonical axes (calculation steps 4 and 5 in the previous Subsection) as well
as the contribution of the explanatory variables to the canonical ordination axes
(calculation step 6) are not reported, but the correlations between these two sets of
ordinations are given in the Table; they are rather weak. The sum of the three canonical
eigenvalues accounts for only 32% of the variation in response matrix Y.

A second example has been constructed to illustrate the calculation and
interpretation of redundancy analysis. Imagine that fish have been observed at 10 sites
along a transect running from the beach of a tropical island, with water depths going
from 1 to 10 m (Table 11.3). The first three sites are on sand and the others alternate
between coral and “other substrate”. The first six species avoid the sandy area,
possibly because little food is available there, whereas the last three are ubiquitous.
The sums of abundances for the 9 species are in the last row of the Table. Species 1 to
6 come in three successive pairs, with distributions forming opposite gradients of
abundance between sites 4 and 10. Species 1 and 2 are not associated to a single type
of substrate. Species 3 and 4 are found in the coral areas only while species 5 and 6 are
found on other substrates only (coral debris, turf, calcareous algae, etc.). The
distributions of abundance of the ubiquitous species (7 to 9) have been produced using
a random number generator, fitting the frequencies to a predetermined sum; these
species will only be used to illustrate CCA in Section 11.2.

RDA was computed using the first six species as matrix Y, despite the fact that
CCA (Subsection 11.2) is probably more appropriate for these data. Comparison of
Tables 11.4 and 11.5, and of Figs. 11.3 and 11.5, allows, to a certain extent, a
comparison of the two methods. The analysis was conducted on centred y variables
because species abundances do not require standardization. When they are not

Table 11.1 Maximum number of non-zero eigenvalues and corresponding eigenvectors that may be
obtained from canonical analysis of a matrix of response variables Y(n × p) and a matrix of
explanatory variables X(n × m) using redundancy analysis (RDA) or canonical correspondence
analysis (CCA).

Canonical eigenvalues Non-canonical eigenvalues

and eigenvectors and eigenvectors

RDA min[p, m, n – 1] min[p, n – 1]

CCA min[(p – 1), m, n – 1] min[(p – 1), n – 1]
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Results of the analysis are presented in Table 11.4; programs such as CANOCO

provide more output tables than presented here. The data could have produced 3
canonical axes and up to 6 non-canonical eigenvectors. In this example, only 4 of the 6
non-canonical axes had variance larger than 0. An overall test of significance
(Subsection 11.3.2) showed that the canonical relationship between matrices X and Y
is very highly significant (p = 0.001 after 999 permutations; permutation of residuals
using CANOCO). The canonical axes explain 66%, 22% and 8% of the response table’s
variance, respectively; they are all significant (p < 0.05) and display strong species-
environment correlations (r = 0.999, 0.997, and 0.980, respectively).

In Table 11.4, the eigenvalues are first given with respect to the total variance in
matrix Y, as is customary in principal component analysis. They are also presented as
proportions of the total variance in Y as is the practice in program CANOCO in the case
of PCA and RDA. The species and sites are scaled for a distance biplot (RDA scaling
type 1, Subsection 11.1.1). The eigenvectors (called “species scores” in CANOCO) are
normalized to length 1. The site scores (matrix F) are obtained from eq. 11.12. They
provide the ordination of the objects in the space of the original matrix Y. These
ordination axes are not orthogonal to one another because matrix Y contains the
“residual” components of the multiple regressions (Fig. 11.2). The “site scores that are
linear combinations of the environmental variables”, or “fitted site sores” (matrix Z,
not printed in Table 11.4), are obtained from eq. 11.13. They provide the ordination of
the objects in the space of matrix  which contains the fitted values of the multiple
regressions (Fig. 11.2). These ordination axes are orthogonal to one another because

Table 11.3 Artificial data set representing observations (e.g. fish abundances) at 10 sites along a tropical
reef transect. The variables are further described in the text. 

Site Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Sp. 6 Sp. 7 Sp. 8 Sp. 9 Depth Substrate type
No. (m) Coral Sand Other

1 1 0 0 0 0 0 2 4 4 1 0 1 0
2 0 0 0 0 0 0 5 6 1 2 0 1 0
3 0 1 0 0 0 0 0 2 3 3 0 1 0
4 11 4 0 0 8 1 6 2 0 4 0 0 1
5 11 5 17 7 0 0 6 6 2 5 1 0 0
6 9 6 0 0 6 2 10 1 4 6 0 0 1
7 9 7 13 10 0 0 4 5 4 7 1 0 0
8 7 8 0 0 4 3 6 6 4 8 0 0 1
9 7 9 10 13 0 0 6 2 0 9 1 0 0

10 5 10 0 0 2 4 0 1 3 10 0 0 1

Sum 60 50 40 30 20 10 45 35 25

Ŷ
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Table 11.4 Results of redundancy analysis of data in Table 11.3 (selected output). Matrix Y: species 1 to 6.
Matrix X: depth and substrate classes.

Canonical axes Non-canonical axes

I II III IV V VI VII

Eigenvalues (with respect to total variance in Y = 112.88889)
74.52267 24.94196 8.87611 4.18878 0.31386 0.03704 0.00846

Fraction of total variance in Y (these are the eigenvalues of program CANOCO for RDA)
0.66014 0.22094 0.07863 0.03711 0.00278 0.00033 0.00007

Cumulative fraction of total variance in Y accounted for by axes 1 to k
0.66014 0.88108 0.95971 0.99682 0.99960 0.99993 1.00000

Normalized eigenvectors (“species scores”): mat. U for the canonical and Ures for the non-canonical portions
Species 1 0.30127 –0.64624  –0.39939  –0.00656 –0.40482 0.70711 –0.16691
Species 2 0.20038 –0.47265 0.74458 0.00656 0.40482 0.70711 0.16690
Species 3 0.74098 0.16813 –0.25690 –0.68903 –0.26668 0.00000 0.67389
Species 4 0.55013 0.16841 0.26114 0.58798 0.21510 0.00000 0.68631
Species 5 –0.11588 –0.50594 –0.29319 0.37888 –0.66624 0.00000 0.12373
Species 6 –0.06292 –0.21535 0.25679 –0.18944 0.33312 0.00000 –0.06187

Site scores (“sample scores”): matrices F for the canonical and non-canonical portions, eqs. 11.12 and 9.4
Site 1 –6.82791 5.64392 –1.15219 0.24712 1.14353 0.23570 0.01271
Site 2 –7.12919 6.29016 –0.75280 0.00000 0.00000 –0.47140 0.00000
Site 3 –6.92880 5.81751 –0.00823 –0.24712 –1.14353 0.23570 –0.01271
Site 4 –4.00359 –6.97190 –4.25652 2.14250 –0.28230 0.00000 0.00141
Site 5 13.63430 0.85534 –3.96242 –3.80923 –0.14571 0.00000 0.10360
Site 6 –4.03654 –5.82821 –1.12541 0.71417 –0.09410 0.00000 0.00047
Site 7 12.11899 1.03525 0.13651 0.22968 0.08889 0.00000 –0.22463
Site 8 –4.06949 –4.68452 2.00570 –0.71417 0.09410 0.00000 –0.00047
Site 9 11.34467 1.38328 3.97855 3.57956 0.05682 0.00000 0.12103
Site 10 –4.10243 –3.54082 5.13681 –2.14250 0.28230 0.00000 –0.00141

Correlations of environmental variables with site scores from eq. 11.12
Depth 0.42204 –0.55721 0.69874
Coral 0.98708 0.15027 0.01155
Sand –0.55572 0.81477 –0.14471
Other subs. –0.40350 –0.90271 0.12456

Biplot scores of environmental variables
Depth 0.34340 –0.26282  0.20000
Coral 0.80314 0.07088 0.00330
Sand –0.45216 0.38431 –0.04142
Other subs. –0.32831 –0.42579 0.03565

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram
Coral 12.36599 1.09129 0.05088
Sand –6.96197 5.91719 –0.63774
Other subs. –4.05301 –5.25636 0.44014
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the eigenanalysis (PCA in Fig. 11.2) has been conducted on matrix . Both the “site
scores” (matrix F) and “fitted site scores” (matrix Z) may be used in RDA biplots.* 

Correlations of the environmental variables with the ordination vectors can be
obtained in two forms: either with respect to the “site scores” (eq. 11.12) or with
respect to the “fitted site scores” (eq. 11.13). The latter set of correlations is used to
draw biplots containing the sites as well as the variables from Y and X  (Fig. 11.3).
There were three binary variables in Table 11.3. Each such variable may be
represented by the centroid of the sites possessing state “1” for that variable (or else,
the centroid of the sites possessing state “0”). These three variables are represented by
both arrows (correlations) and symbols (centroids) in Fig. 11.3 to show the difference
between these representations; in real-case studies, one chooses one of the
representations.

The following question may arise when the effect of some environmental variables
on the dependent variables Y is already well known (e.g. the effect of altitude on
vegetation along a mountain slope, or the effect of depth on plankton assemblages):
what would the residual ordination of sites (or the residual correlations among
variables) be like if one could control for the linear effect of such well-known
environmental variables? An approximate answer may be obtained by looking at the
structure of the residuals obtained by regressing the original variables on the variables
representing the well-known factors. With the present data set, for instance, one could
examine the residual structure, after controlling for depth and substrate, by plotting
ordination biplots of the non-canonical axes  in Table 11.4. These axes correspond to a
PCA of the table of residual values of the multiple regressions (Fig. 11.2).

3 — Algorithms

There are different ways of computing RDA. One may go through the multiple
regression and principal component analysis steps described in Fig. 11.2, or calculate
the matrix corresponding to SYX S–1

XX S'YX in eq. 11.3 and decompose it using a
standard eigenvalue-eigenvector algorithm.

Alternatively, ter Braak (1987c) suggested to modify his iterative algorithm for
principal component analysis (Table 9.5), by incorporating a regression analysis at the
end of each iteration, as illustrated in Fig. 11.4. Because it would be cumbersome to
repeat a full multiple regression calculation at the end of each iteration and for each

*  To obtain a distance biplot based upon the covariance matrix using program CANOCO (version
3 or later), one should centre the response variables (no standardization) and emphasize the
ordination of sites by choosing scaling –1 in the “long dialogue” option. In the Windows version
of CANOCO 4.0, focus on inter-site distances and do not post-transform the species scores.
CANOCO prints the eigenvalues as proportions of the total variation in matrix Y. The scalings of
eigenvalues and eigenvectors produced by CANOCO are described in the footnotes of
Subsection 11.1.1. Changing the scaling of species and site score vectors by any multiplicative
constant does not change the interpretation of a biplot.

Ŷ
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canonical eigenvector, a short cut can be used. Vector b of regression coefficients is
obtained from eq. 2.19:

b = [X 'X]–1 [X'y]

Only the [X'y] portion must be recomputed during each iteration of the estimation of
the canonical eigenvectors; the [X'X]–1 part, which is the most cumbersome to
calculate, is constant during the whole redundancy analysis run so that it needs to be
computed only once. 

The iterative procedure presents two advantages: (1) with large problems, one is
satisfied, in most instances, with computing a few axes only, instead of having to
estimate all eigenvalues and eigenvectors. The iterative procedure was developed to do

Figure 11.3 RDA ordination biplot of the artificial data presented in Table 11.3; the numerical results of the
analysis are in Table 11.4. Dots are the sampling sites; numbers represent both the site number
identifiers and depths (in m). Dashed arrows are the species. Full-line arrows represent the
“biplot scores of environmental variables”. The lengths of all arrows have been multiplied by 10
for clarity of the diagram. The “centroids of sites with code 1 for [the three] binary
environmental variables” are represented by triangles. Binary environmental variables are
usually represented by either arrows or symbols, not both as in this diagram.
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that. (2) With smaller problems, the canonical and non-canonical axes can all be
computed at once; one does not have to carry out a separate calculation on the matrix
of residuals to obtain the non-canonical axes. The main disadvantage of the procedure
is the possibility of numerical instability when a large number of successive axes are
computed. For large problems in which all the canonical axes are needed, this
procedure also requires more calculation time than regular eigenanalysis.

11.2 Canonical correspondence analysis (CCA)

Canonical correspondence analysis is a canonical ordination method developed by ter
Braak (1986, 1987a, 1987c) and implemented in the program CANOCO (ter Braak,
1988b, 1988c, 1990; ter Braak & Smilauer, 1998). It is the canonical form of
correspondence analysis. Any data table that could be subjected to correspondence
analysis forms a suitable response matrix Y for CCA; this is the case, in particular, for
species presence-absence or abundance tables (Section 9.4).

1 — The algebra of canonical correspondence analysis

The mathematics of CCA is essentially the same as that of redundancy analysis.
Differences involve the diagonal matrices of row totals D(fi+) and row relative
frequencies D(p i+), as defined in Section 9.4 for correspondence analysis; fi+ is the
sum of values in row i of matrix Y whereas pi+ is fi+ divided by the grand total f++ of
all values in Y. 

Figure 11.4 Two-way weighted summation algorithm (from Table 9.5), modified to compute redundancy
analysis. Two types of ordinations are produced, one in the space of the Y variables and the other
in the space of the X variables. Translated from Borcard & Buttler (1997).

Arbitrary initial object scores

Variable scores

Object scores Rescaled object scores:
ordination in space of variables Y

Fitted object scores (normalized):
fitted values of multiple regression of

object scores on explanatory variables X

Rescaled object scores:
ordination in space of variables X
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The calculations are modified in such a way as to simulate an analysis carried out
on inflated data matrices Yinfl and Xinfl constructed in a way similar to the inflated data
table of Subsection 9.4.4. Assume that Y contains species presence-absence or
abundance data and X  contains environmental data. A single species presence, from
the original table of species abundances, is placed in each row of Yinfl . An inflated
matrix Yinfl  usually has many more rows than matrix Y. In the corresponding inflated
matrix X infl , the row vectors of environmental data are repeated as required to make
every species presence (in Yinfl) face a copy of the appropriate vector of environmental
data (in Xinfl). Modifications to the RDA algorithm are the following:

• The dependent data table is not matrix Y centred by variables (columns) as in RDA.
CCA uses matrix  of the contributions to chi-square, also used in correspondence
analysis.  is derived from matrix Y using eq. 9.32. Matrix Q of the relative
frequencies is also computed (Q = (1/f++)Y); it is used in the scaling operations.

• Matrix X is standardized using weights D(fi+). To achieve this, compute the mean
and standard deviation for each column of the inflated matrix X infl , which contains f++
rows, and use them to standardize the environmental data. Use the maximum
likelihood estimator for the variance instead of the usual estimator (eq. 4.3); in other
words, divide the sum of squared deviations from the mean by the number of rows of
matrix Xinfl (which is equal to f++), instead of the number of rows minus 1.

• Weighted multiple regression is used instead of a conventional multiple regression.
The weights, given by diagonal matrix D(p i+)1/2, are applied to matrix X everywhere it
occurs in the multiple regression equations, which become:

B = [X' D(p i+) X]–1 X' D(pi+)1/2  

and  = D(p i+)1/2 X  B

The equation for computing  is then:

 = D(p i+)1/2 X  [X' D(pi+) X]–1 X' D(pi+)1/2 (11.15)

The matrix of residuals is computed as Yres = . This is the equivalent, for CCA,
of the equation Yres =  used in Fig. 11.2 for RDA.

• Eigenvalue decomposition (eqs. 11.10 and 11.11) is carried out on matrix 
which, in this case, is simply the matrix of sums of squares and cross products, without
division by the number of degrees of freedom — as in correspondence analysis: 

(11.16)

Inflated
data matrix

Q
Q

Q

Ŷ

Ŷ

Ŷ Q

Q Ŷ–
Y Ŷ–

SY'ˆ Ŷ

S
Y'ˆ Ŷ

Y'ˆ Ŷ=

legendre
B = [X' D(pi+) X]–1 X' D(pi+)1/2
and = D(pi+)1/2 X B
Q

legendre
Y



596 Canonical analysis

One can show that , computed as described, is equal to  (eq. 11.3
and 11.11) if the covariance matrices  and  are computed with weights on X,
given by matrix D(pi+)1/2 , and without division by the number of degrees of freedom.

With these modifications, CCA is computed using eq. 11.3, obtaining matrices Ò of
eigenvalues and U of eigenvectors. Canonical correspondence analysis is thus a
weighted form of redundancy analysis, applied to dependent matrix . It
approximates chi-square distances among the rows (objects) of the dependent data
matrix, subject to the constraint that the canonical ordination vectors be maximally
related to weighted linear combinations of the explanatory variables. The equations are
also described in Section 5.9.5 of ter Braak (1987c). The method is perfectly suited to
analyse the relationships between species presence/absence or abundance data
matrices and tables of environmental variables. The number of canonical and non-
canonical axes expected from the analysis are given in Table 11.1. Tests of significance
are available, in CCA and RDA, for the total canonical variation and for individual
eigenvalues (Subsection 11.3.2).

• The normalized matrix  is obtained using eq. 9.38:

 = UÒ–1/2

In CCA, matrix  as defined here does not contain the loadings of the rows of  on
the canonical axes. It contains instead the loadings of the rows of  on the ordination
axes, as in CA. It will be used to find the site scores (matrices F and ) in the space of
the original variables Y. The site scores in the space of the fitted values  will be
found using U instead of .

• Matrix V of species scores (for scaling type 1) and matrix  of site scores (for
scaling type 2) are obtained from U and  using the transformations described for
correspondence analysis (Subsection 9.4.1):

eq. 9.41 (species scores, scaling 1): V = D(p+j)
–1/2U

and eq. 9.42 (site scores, scaling 2):  = D(pi+)–1/2

or combining eqs. 9.38 and 9.42:  = D(pi+)–1/2 UÒ–1/2

Scalings 1 and 2 are the same as in correspondence analysis (Subsection 9.4.1).
Matrices F  (site scores for scaling type 1) and  (species scores for scaling type 2) are
found using eqs. 9.43a and 9.44a:

Ò1/2   and   Ò1/2

Equations 9.43b and 9.44b cannot be used here to find F and  because the
eigenanalysis has been conducted on a covariance matrix (eq. 11.16) computed from
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the matrix of fitted values  (eq. 11.15) and not from Q. The site scores which are
linear combinations of the environmental variables, corresponding to eq. 11.13 of
RDA, are found from  using the following equations:

For scaling type 1: Zscaling 1 = D(pi+)–1/2 U (11.17)

For scaling type 2: Zscaling 2 = D(p i+)–1/2 UÒ–1/2 (11.18)

With scaling type 1, biplots can be drawn using either F and V, or Zscaling 1 and V.
With scaling type 2, one can use either  and , or Zscaling 2 and . The construction
and interpretation of CCA biplots is discussed by ter Braak & Verdonschot (1995).

• Residuals can be analysed by applying eigenvalue decomposition (eq. 11.10) to
matrix Yres, producing matrices of eigenvalues Ò and normalized eigenvectors U.
Matrix  is obtained using eq. 9.38:  = UÒ–1/2. Species and site scores are
obtained for scaling types 1 and 2 (eqs. 9.41, 9.42, 9.43a and 9.44a) using the matrices
of row and column sums D(p i+)–1/2 and D(p+j)

–1/2 of the original matrix Y.

A little-known application of CCA is worth mentioning here. Consider a
qualitative environmental variable and a table of species presence-absence or
abundance data. How can one “quantify” the qualitative states, i.e. give them values
along a quantitative scale which would be related in some optimal way to the species
data? CCA provides an easy answer to this problem. The species data form matrix Y;
the qualitative variable, recoded as a set of dummy variables, is placed in matrix X.
Compute CCA and take the fitted site scores (“site scores which are linear
combinations of environmental variables”): they provide a quantitative rescaling of the
qualitative variable, maximizing the weighted linear correlation between the dummy
variables and matrix . In the same way, RDA may be used to rescale a qualitative
variable with respect to a table of quantitative variables of the objects if linear
relationships can be assumed.

McCune (1997) warns users of CCA against inclusion of noisy or irrelevant
explanatory variables in the analysis. They may lead to misleading interpretations.

2 — Numerical example

Table 11.3 will now be used to illustrate the computation and interpretation of CCA.
The 9 species are used as matrix Y. Matrix X is the same as in Subsection 11.1.2.
Results are presented in Table 11.5 and Fig. 11.5; programs such as CANOCO provide
more output tables than presented here. There was a possibility of 3 canonical and 8
non-canonical axes. Actually, the last 2 non-canonical axes have zero variance. An
overall test of significance (Subsection 11.3.2) showed that the canonical relationship
between matrices X and Y is very highly significant (p = 0.001 after 999 permutations,
by permutation of residuals under a full model; Subsection 11.3.2). The canonical axes
explain 47%, 24% and 10% of the response table’s variance, respectively. They are all
significant (p < 0.05) and display strong row-weighted species-environment
correlations (r = 0.998, 0.940, and 0.883, respectively).

Ŷ
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Ŷ

Ŷ

V̂ F̂ F̂
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Table 11.5 Results of canonical correspondence analysis of the data in Table 11.3 (selected output). Matrix
Y: species 1 to 9; X: depth and 3 substrate classes. Non-canonical axes VIII and IX not shown.

Canonical axes Non-canonical axes

I II III IV V VI VII

Eigenvalues (their sum is equal to the total inertia in matrix  of species data = 0.78417)
0.36614 0.18689 0.07885 0.08229 0.03513 0.02333 0.00990

Fraction of the total variance in 
0.46691 0.23833 0.10055 0.10494 0.04481 0.02975 0.01263

Cumulative fraction of total inertia in  accounted for by axes 1 to k
0.46691 0.70524 0.80579 0.91072 0.95553 0.98527 0.99791

Eigenvectors (“species scores”): matrices  for the canonical and the non-canonical portions (eq. 9.44a)
Species 1 –0.11035 –0.28240 –0.20303 0.00192 0.08223 0.08573 –0.01220
Species 2 –0.14136 –0.30350 0.39544 0.14127 0.02689 0.14325 0.04303
Species 3 1.01552 –0.09583 –0.19826 0.10480 –0.13003 0.02441 0.04647
Species 4 1.03621 –0.10962 0.22098 –0.22364 0.24375 –0.02591 –0.05341
Species 5 –1.05372 –0.53718 –0.43808 –0.22348 0.32395 0.12464 –0.11928
Species 6 –0.99856 –0.57396 0.67992 0.38996 –0.29908 0.32845 0.21216
Species 7 –0.25525 0.17817 –0.20413 –0.43340 –0.07071 –0.18817 0.12691
Species 8 –0.14656 0.85736 –0.01525 –0.05276 –0.35448 –0.04168 –0.19901
Species 9 –0.41371 0.70795 0.21570 0.69031 0.14843 –0.33425 –0.00629

Site scores (“sample scores”): matrices  for the canonical and the non-canonical portions (eq. 9.42)
Site 1 –0.71059 3.08167 0.21965 1.24529 1.07293 –0.50625 0.24413
Site 2 –0.58477 3.00669 –0.94745 –2.69965 –2.13682 0.81353 0.47153
Site 3 –0.76274 3.15258 2.13925 3.11628 2.30660 –0.69894 –1.39063
Site 4 –1.11231 –1.07151 –1.87528 –0.66637 1.10154 1.43517 –1.10620
Site 5 0.97912 0.06032 –0.69628 0.61265 –0.98301 0.31567 0.57411
Site 6 –1.04323 –0.45943 –0.63980 –0.28716 0.57393 –1.44981 1.70167
Site 7 0.95449 0.08470 0.13251 0.42143 0.11155 –0.39424 –0.67396
Site 8 –0.94727 0.10837 0.52611 0.00565 –1.26273 –1.06565 –1.46326
Site 9 1.14808 –0.49045 0.47835 –1.17016 1.00599 0.07350 0.08605
Site 10 –1.03291 –1.03505 2.74692 1.28084 –0.36299 1.98648 1.05356

Correlations of environmental variables with site scores
Depth 0.18608 –0.60189 0.65814
Coral 0.99233 –0.09189 –0.04614
Sand –0.21281 0.91759 0.03765
Other subs. –0.87958 –0.44413 0.02466

Correlations of environmental variables with fitted site scores (for biplots)
Depth 0.18636 –0.64026 0.74521
Coral 0.99384 –0.09775 –0.05225
Sand –0.21313 0.97609 0.04263
Other subs. –0.88092 –0.47245 0.02792

Centroids of sites with code “1” for BINARY environmental variables, in ordination diagram
Coral 1.02265 –0.10059 –0.05376
Sand –0.66932 3.06532 0.13387
Other subs. –1.03049 –0.55267 0.03266
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Q
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Scaling type 2 (from Subsection 9.4.1) was used, in this example, to emphasize the
relationships among species. As a result, the species (matrix ) are at the centroids of
the sites (matrix ) in Fig. 11.5a and distances among species approximate their chi-
square distances. Species 3 and 4 characterize the sites with coral substrate, whereas
species 5 and 6 indicate the sites with “other substrate”. Species 1 and 2, which occupy
an intermediate position between the sites with coral and other substrate, are not well
represented in the biplot of canonical axes I and II; axis III is needed to adequately
represent the variance of these species. Among the ubiquitous species 7 to 9, two are
well represented in the subspace of canonical axes I and II; their arrows fall near the
middle of the area encompassing the three types of substrate. The sites are not
perfectly ordered along the depth vector; the ordering of sites along this variable
mainly reflects the difference in species composition between the shallow sandy sites
(1, 2 and 3) and the other sites.

Figure 11.5 CCA ordination biplot of the artificial data in Table 11.3; the numerical results of the analysis
are in Table 11.5. (a) Biplot representing the species (dashed arrows), sites (dots, with site
identifiers which also correspond to depths in m) and environmental variables (full arrow for
depth, triangles for the three binary substrate variables). (b) Ranking of the species along a
quantitative environmental variable (depth in the present case) is inferred by projecting the
species onto the arrow representing that variable.
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Analysis of variance by canonical redundancy analysis (RDA) 

 A single factor is coded using dummy variables. Two or more orthogonal factors are coded 
using Helmert contrasts. How to obtain the interaction is described in Appendix C of: 

Legendre, P. and M. J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies 
responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24. [PDF 
available on the Web page   http://www.bio.umontreal.ca/legendre/reprints/ ] 

 

 Helmert contrasts are further described on pp. 155-156 of: 

Venables, W. N. and B. D. Ripley. 1994. Modern applied statistics with S-Plus. Springer-Verlag, 
New York. 

They are available in the R statistical language: function “contr.helmert”. 
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3.4- Using regression to carry out A

 

NOVA

 

The A

 

NOVA

 

 factor may be coded using dummy variables

Example, intercept + 3 groups: 

Example using 4 groups:

Groups Dummy variables
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

b X'X[ ] 1–
X'y=

Int.

y =

y11

•

•

•

•

•

•

y 1j

y21

y2 j

y 31

y3 j

X =

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

b =

µ
b1

b2

b3

3 groups
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Orthogonal dummy variables

2 groups: 3 groups: 4 groups: 5 groups: etc.
1 variable 2 variables 3 variables 4 variables

The number of (binary or orthogonal) dummy variables used in the
regression equation is equal to the number of degrees of freedom of the
among-group variation in A

 

NOVA

 

 (= number of groups – 1).

Interaction

A significant interaction between two factors indicates that the effects of
one of the factors are not consistent across the levels of the other factor. 

With more than one factor, one must represent the main factors using
orthogonal dummy variables. Interaction dummy variables are the direct
products of the dummy variables coding for the main factors. As a
consequence, the dummy variables representing interactions will be
linearly independent of the dummy variables representing the main
factors if the main factors are crossed (two-way design) or nested.

 

A

 

1

 

A

 

2

 

Hypothesis of no interaction

 

B

 

1

 

H

 

0

 

:  –  =  – 

 

B

 

2

 

       –  =  – 

  +1  

  –1  
             

  +2  0

1–   +1  

1– 1–

             

  +3  0 0

1–   +2  0

1– 1–   +1  

1– 1– 1–

             

  +4  0 0 0

1–   +3  0 0

1– 1–   +2  0

1– 1– 1–   +1  

1– 1– 1– 1–

µA1B1
µA2B1

µA1B1
µA2B1

µA1B2
µA2B2

µA1B2
µA2B2

µA1B1
µA1B2

µA2B1
µA2B2
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Example: coding an interaction
Factor 

 

A

 

: 3 groups (

 

a

 

 = 2 orthogonal dummy variables)
Factor 

 

B

 

: 2 groups (

 

b

 

 = 1 dummy variable)
Interaction 

 

AB

 

: (

 

a

 

 

 

×

 

 

 

b

 

) dummy variables

b =

bA1

bA2

b
B1

b
AB11

b
AB21

y =

y111

y112

y113

y121

y122

y123

y211

y212

y213

y221

y222

y223

y311

y312

y313

y321

y322

y323

X =

+2 0 1 +2 0

+2 0 1 +2 0

+2 0 1 +2 0

+2 0 −1 −2 0

+2 0 −1 −2 0

+2 0 −1 −2 0

−1 1 1 −1 1

−1 1 1 −1 1

−1 1 1 −1 1

−1 1 −1 1 −1

−1 1 −1 1 −1

−1 1 −1 1 −1

−1 −1 1 −1 −1

−1 −1 1 −1 −1

−1 −1 1 −1 −1

−1 −1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 1 1

A B AB
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4- Example 1: ANOVA with 2 crossed factors, computed using RDA

Example 1: Data from Sokal & Rohlf (1981, p. 325). The data may be
recoded as follows for RDA:

Two-way analysis of variance computed using RDA (n = 12):

“∑ can. λ” for residuals = sum of the non-canonical eigenvalues. This
value is given in each of the three CANOCO output files which are needed
to obtain the “∑ can. λ” for Sex, Lard and Interaction.

Food
consumption =

709

Sex =

+1

Lard =

+1

Interaction =

+1
679 +1 +1 +1
699 +1 +1 +1
592 +1 –1 –1
538 +1 –1 –1
476 +1 –1 –1
657 –1 +1 –1
594 –1 +1 –1
677 –1 +1 –1
508 –1 –1 +1
505 –1 –1 +1
539 –1 –1 +1

d.f. RDA (CANOCO, 999 permutations) Sokal & Rohlf
∑ can. λ ∑ can. λ/d.f. F Prob. F Prob.

Sex 1 0.0487 0.0487 2.593 0.140 2.593 0.1460
Lard 1 0.7890 0.7890 41.969 0.001 41.969 0.0002
Interact. 1 0.0118 0.0118 0.630 0.463 0.630 0.4503
Resid. 8 0.1504 0.0188

legendre



Analysis of variance by canonical redundancy analysis (RDA) 

Examples of complex analyses of variance for species data 

Hooper, E., R. Condit and P. Legendre. 2002. Responses of 20 native tree species to reforestation 
strategies for abandoned farmland in Panama. Ecological Applications 12: 1626-1641. [PDF 
available on the Web page   http://www.bio.umontreal.ca/legendre/reprints/ ] 
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FIG. 6. Ordination biplot illustrating the significant (P , 0.001) effect of Saccharum treatment on the relative height
growth (RHT) of 16 tree species in the wet season, between May and July 1997. Same-letter superscripts indicate no significant
difference (P , 0.05) based on post hoc analysis. Saccharum treatment explained 19.8% of the variance between species,
with the first and second axes explaining 11.2% and 4.5%, respectively. Arrows indicate treatments and lines indicate species
vectors. Codes associated with each species are listed in Table 1, and the symbols match Fig. 2.

relatively high performance in the Saccharum control
(Table 4). We conclude that the Saccharum did not
completely limit their regeneration. A reforestation ef-
fort starting with seed and minimal pre-sowing treat-
ment is likely to succeed with these large-seeded,
shade-tolerant species.

Fires burn yearly in the dry season in these Sac-
charum-dominated grasslands, and our data show that
these wildfires are also a major barrier to tree regen-
eration. Fire killed most species and significantly low-
ered the germination of all except Trema and Byrson-
ima (but those two cannot compete with established
Saccharum). Resprouting from cut stems or stumps is
a very common mechanism for reestablishment follow-
ing disturbance (Aide et al. 1995), and we found that
seedlings of several large-seeded species (Carapa, Dip-
teryx, Virola, Ormosia, and Calophyllum) could re-
sprout following fire. Recurring fires, as a result of
grass invasion following pasture abandonment, arrest
natural tree regeneration in abandoned pastures at other
Neotropical sites as well (Janzen 1988, Nepstad et al.
1990, Aide and Cavelier 1994).

Management suggestions

Fire is a major barrier to tree regeneration at our
sites, limiting both establishment and species diversity.
We therefore recommend the establishment of fire-
breaks, which have also been an integral part of re-
forestation strategies in Costa Rica (Janzen 1988) and
the Amazon (Nepstad et al. 1990). The breaks must be
large for effective fire protection because the flame
height of Saccharum wildfires can reach .15 m.

Many alternatives have been suggested for forest res-
toration throughout the wet tropics. These range, in
order of increasing cost, from simply allowing natural
regeneration to proceed, to planting seeds or seedlings
to assist natural regeneration, through establishing tree
plantations and allowing recruitment of tree seedlings
below them (Brown and Lugo 1994, Guariguata et al.
1995, Kuusipalo et al. 1995). Our goal was to find a
low-cost strategy for extensive forest restoration in
abandoned Panamanian farmland, and our results sug-
gest that even with the removal of fire, natural tree
regeneration will not proceed unassisted because the
Saccharum poses a formidable barrier to the small-
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APPENDIX A

Summary of repeated-measures ANOVA on tree seedling germination, abundance, survival, height, and relative height
growth (RHT).

Source

Germination†

df F

Abundance†

df F

Survival†

df F

Height‡

df F

RHT‡

df F

Between subjects
Distance
Site 3 distance
Treatment
Treatment 3 distance
Site 3 treatment 1

Site 3 treatment 3 distance

2
4§
4
8

24\

0.52

11.68**
0.69

2

4
8

3.39

13.04**
0.45

2

4
8

1.11

2.79*
0.43

2

4
8

3.52

3.22**
0.22

2

4
8

4.77

4.86**
0.58

Within subjects
Time
Time 3 distance
Time 3 site 3 distance
Time 3 treatment
Time 3 treatment 3 distance

2
4
8§
8

16

36.31**
0.59

1.84
0.92

3
6

12
24

80.73**
1.01

2.82**
0.80

2
4

8
16

1.71
0.15

1.09
0.74

2
4

8
16

5.68**
2.17

1.08
0.36

2
4

8
16

0.86
0.13

0.26
1.08

Time 3 site 3 treatment 1
Time 3 site 3 treatment 3 distance

48\

Notes: The analysis followed a repeated-measures, split-plot design. Sources of variation included distance from the forest
as the main plot factor (distance), shading and mowing treatments of the Saccharum as the subplot factor (treatment), and
their interactions. Site was included as a blocking factor.

* P , 0.05; ** P , 0.01.
† Sample size: n 5 45 subjects (i.e., 45 unburned subplots).
‡ Sample size: n 5 371 subjects (i.e., 371 seedlings were present over all three time periods in the 45 unburned subplots).
§ Main plot error.
\ Subplot error.

APPENDIX B

Summary of RDA in a MANCOVA-like design on matrices of germination per species
per subplot per time period (germination) or relative growth rates for height (RHT) per
species per subplot per time period.

Source

Germination

df† F

RHT

df‡ F

Site
Distance
Treatment
Treatment 3 distance
Time
Time 3 distance
Time 3 treatment
Time 3 treatment 3 distance

2
2
4
8
3
6

12
24

1.03
2.89**
0.70

31.51**
1.01
1.81**
0.72

2
2
4
8
1
2
4
8

1.41
4.67**
1.25

12.08**
2.46*
2.85**
1.36

Notes: Sources of variation included distance from the forest (distance), shading and mowing
treatments of the Saccharum (treatment), time, and their interactions. Site and the interaction
of site with all main factors and interactions were used as covariables.

* P , 0.05; ** P , 0.01 (determined using permutation testing).
† For all factors and interactions, denominator df 5 60.
‡ For all factors and interactions, denominator df 5 16.




