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Correspondence analysis	(CA) 

An ordination method preserving the chi-square distance1 among 
objects ...

DeÞnition of correspondence analysis

É applicable to multivariate frequency or presence-absence data.

In ecology: 

Community composition data  (species abundance or  presence-
absence, biomass data, É) can be analysed by CA.

Mathematical properties of data

Data  must  be non-negative (i.e.  !  0),  frequency-like2,  and 
dimensionally homogeneous.

1 The chi-square distance is described in detail in the course on Dissimilarities.
2 Examples: biomass or energy data; monetary units (e.g. $, £, ", ´).



Computation steps
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Example: community 
composition data
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Compute the matrix 
of contributions to 
chi-square

Matrix  Q = qij
!" #$=

pij %pi+p+j

pi+pi+

!

"
&
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$
'
'
=

Oij %Eij( ) Eij

f++

wherepij  = fij   / f++

pi+  = fi+  / f++

p+j  = f+j  / f++

The statistics##          ####           in the numerator are called 
Òcomponents of chi-squareÓ in contingency table analysis. 

They are the square roots of the statistics that are summed to produce the Pearson 
chi-square statistic. Reference: Legendre & Legendre (2012, eq. 6.26).

Oij ! Eij( ) Eij
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Matrix  Q = qij
!" #$=

pij %pi+p+j

pi+pi+

!

"
&
&

#

$
'
'
=

Oij %Eij( ) Eij

f++

wherepij  = fij   / f++

pi+  = fi+  / f++

p+j  = f+j  / f++

Q = qij
⎡⎣ ⎤⎦=

!!Sp1!!!!! Sp2!!!! Sp3!!!! Sp4!!!! Sp5!!!!

Site1
Site2
Site3

!!0.169 −0.070 −0.059 −0.173 −0.007
!!0.113 !!0.004 −0.015 −0.131 −0.086
−0.276 !!0.072 !!0.076 !!0.295 !!0.079
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Total inertia: sum( #   ) = 0.285 = sum of the CA eigenvaluesqij
2

Compute the matrix 
of contributions to 
chi-square
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Cross-product matrix:

!Q Q c" c( )  =

0.118 #0.031 #0.033 #0.125 #0.033
#0.031 0.010 0.010 0.033 0.006
#0.033 0.010 0.010 0.035 0.008
#0.125 0.033 0.035 0.134 0.036
#0.033 0.006 0.008 0.036 0.014
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)

Compute eigen-decomposition of             : !Q Q !  " kI( )uk = 0!Q Q
c! c( )

Eigenvalues: ! 1 = 0.278, ! 2 = 0.007

Matrix of eigenvalues: ! = 0.278 0.000
0.000 0.007

"

#
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&
'

Maximum number of eigenvalues > 0 in CA: k = min(r Ð 1, c Ð 1)
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U(c! k) =

Axis1!!!! Axis2

Sp1

Sp2

Sp3

Sp4

Sp5

!!0.651 !!0.078
" 0.172 " 0.536
" 0.181 " 0.272
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Matrix of eigenvectors of             :ʹQ Q c×c( )

Matrix of eigenvectors of            :Q !Q r" r( )

öU(r! k) =!QU" #0.5 =

Axis1!!!! Axis2

Site1
Site2
Site3

#0.481 !!0.597
#0.345 #0.802
!!0.806 !!0.012
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Do not use the chord, Hellinger or chi-square transformation on 
the data before subjecting them to CA.

CA must be computed on raw abundance data.

Data transformations before CA?
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Sometimes, users apply the log(y+1) transformation to frequency 
data before CA in order to reduce the importance of extremely 
high abundance values, e.g. in microbial ecology.

The results may still  be meaningful, but the mathematics suffer 
because the row and column sums of the raw abundance data 
table,  which are  used in  the  calculation of  the  chi-square 
transformation leading to the# # #matrix, do not have their usual 
mathematical meaning of sums of frequencies. 

Q



Scalings in CA biplots

Scaling type 1: 
¥ Preserves the chi-square distance among the sites.
! !Plot matrices F for sites and V for species.

Scaling type 2: 
¥ Preserves the chi-square distance among the species.
! !Plot matrices     for sites and     for species.öV öF

Compute the following matrices used in these plots:

V(c! k) = D(p+ j )
" 0.5U öV(r! k) = D(pi+)" 0.5 öU

F(r! k) = öV" 0.5 öF(c! k) = V" 0.5

As in PCA, biplots are graphs in which objects and variables are 
represented together.



Example computed and drawn using function 
CA.newr() of the book Numerical ecology 
with R, 2nd edition (Borcard et al., 2018).

In scaling 1 biplots, the sites are at 
chi-square distances of one another 
(e.g. D(Site.1, Site.3), blue arrow). 

Matrices F and V form a pair such 
that the sites (coordinates given by 
matrix F) are at the centroid (also 
called centre of mass, or barycentre) 
of the species in matrix V.

Scaling 1 is most appropriate if one 
is primarily interested in the distance 
relationships among the sites. 
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¥ The contributions of the species to 
the sites are reßected by the site-to-
species distances in the biplot (e.g. 
Site.2, red arrows). 

¥ The species are around the sites, in 
positions reßecting their abundances 
at each site.

In the example, 

species 1 is closer to sites 1 and 2 
than it is to site 3 because it is more 
abundant at sites 1 and 2.
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CA scaling 1 biplot preserves the chi-square distances among the sites 

Can we verify that property?

         Site.1   Site.2
Site.2  0.21578          
Site.3  1.11479  1.10026

Compute the Euclidean 
distance among the rows of F
(giving the positions of the sites 
in the CA scaling 1 biplot) 

Compute the chi-square
distance among the sites in 
the raw data matrix Y



In scaling 2 biplots, the species are 
at chi-square distances of one 
another 
(e.g. D(Sp.1, Sp.5), blue arrow).

¥ The sites are around the species, in 
positions reßecting sp. abundances 
at the sites (e.g. Sp.5, red arrows).

o! Species 5 is more abundant at 
sites 1 and 3 than at site 2.

o! Species 1 is more abundant at 
sites 1 and 2 than at site 3.

o! Species 4 is only found at site 3 
(symbols superposed).

¥ Matrices ####and#####form a pair such 
that the species (in matrix###) are at 
the centroids of the sites in matrix###.

o! Sp. 2 and 3 are the most similar.
o! Sp. 1 and 4 are the most distant.

öV
öF

öF

öV
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Scaling 2 is most appropriate if one 
is primarily interested in the distance 
relationships among the species. 
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CA scaling 2 biplot preserves the chi-square distances among the species

Can we verify that property?

      Sp.1  Sp.2  Sp.3  Sp.4
Sp.2 0.773 
Sp.3 0.744 0.065 
Sp.4 1.905 1.149 1.165
Sp.5 0.831 0.296 0.242 1.105

Compute the chi-square
distance among the species 
in the raw data matrix Y

Compute the Euclidean 
distance among the rows of 
(giving the positions of the 
species in CA scaling 2 biplot) 

öF



Scaling type 4 Ð 

¥ Useful in the analysis of a contingency table crossing two qualitative 
descriptors or two factors. Draw a joint plot using F which preserves the 
chi-square distances among the rows,  and# # #which preserves the chi-
square distances among the columns of the contingency table. 

¥  This  hybrid  scaling  correctly  represents  the  chi-square  distance 
relationships among the states of each of the two qualitative descriptors.

öF

Two other types of CA scalings may also be available in software:

Scaling type 3 Ð 

¥ This Òsymmetric scalingÓ is a compromise between scalings 1 and 2. 
Draw together matrices ############(or##############) for sites 

and ############(or##############) for species. 

¥  This  scaling  does  not  preserve  the  chi-square  distances  among  the 
species or among the sites.

öV! 0.25 F! " 0.25

V! 0.25 öF! " 0.25



# Load  function  CA.newr ()
# Read the file "Spiders_28x12_spe.txt" 
spiders <- read.table ( file.choose ())

spiders.CA  <- CA.newr (spiders)

par( mfrow =c(1,2))
biplot ( spiders.CA , scaling =1)
biplot ( spiders.CA , scaling =2)

Compute CA for the spider data using function CA.newr() Ð

CA examples

Function CA.newr.R is found in the material of the book 
Numerical ecology with R, 2nd edition (Borcard et al., 2018).
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CA biplots for the spider data



library ( vegan )
load ( Doubs.RData )   # File Doubs.RData
Doubs.ca  <- cca ( spe [-8,])

par( mfrow =c(1,2))
plot( Doubs.ca , scaling =1, main="Doubs fish , scaling  1")
plot( Doubs.ca , scaling =2, main="Doubs fish , scaling  2")

Compute CA for the Doubs Þsh data using veganÕs cca() Ð
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CA biplots for the Doubs Þsh data

-2 -1 0 1 2 3

-4
-3

-2
-1

0
1

Doubs fish, scaling 1

CA1

C
A

2

Cogo

Satr

Phph
Babl

Thth
Teso

Chna

Pato

Lele

Sqce

BabaAlbi

Gogo

Eslu
Pefl

RhamLegi

Scer

Cyca

Titi

AbbrIcme
Gyce

Ruru

BlbjAlal
Anan

1
23

4

5
6

7

9 10

11
12

1314
15

16
1718

19202122
23

24252627282930

-2 -1 0 1 2 3 4

-2
-1

0
1

2
3

Doubs fish, scaling 2

CA1

C
A

2

Cogo

Satr
PhphBabl

ThthTeso

Chna

Pato

Lele
Sqce

BabaAlbi
Gogo
EsluPefl

RhamLegi
Scer
Cyca

Titi
AbbrIcmeGyceRuru
BlbjAlalAnan

1

2
3

4

5

6

7

9 10

11

12

13
14

15
16

17
18

19202122

23

2425
262728

29
30



R code for the Oribatid mite data using veganÕs cca() Ð

Exercise: run these lines of code in R and examine the biplots.

library ( vegan )
data(mite)
mite.ca  <- cca (mite)

par( mfrow =c(1,2))
plot( mite.ca , scaling =1, main=" Oribatid  mites, scaling  1")
plot( mite.ca , scaling =2, main=" Oribatid  mites, scaling  2")
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In  vegan,  function vegemite()  prints compact  community data 
tables.  The rows and/or  columns can be reordered by explicit 
indexing using values provided by users,  by an environmental 
variable, or using the result of a cluster analysis or an ordination. 

Correspondence analysis is the ordination method of choice for 
reordering the sites and/or the species when producing such a 
reordered table.  The  theoretical basis  for  the  production  of 
reordered tables  by  CA was explained by  ter  Braak (1987, 
section#5.2.3).

Another application of CA

# Example Ð Reorder  the Doubs data using  CA results
# Run the following  code in R
library ( vegan )
Doubs.ca  = cca ( spe )         # Compute  CA results
vegemite ( spe , use= Doubs.ca )



Effects of rare species on CA 

1. For a rare species, a given difference in values between two 
sites increases the chi-square distance between the sites more 
than the same difference found for a common species. 

In that sense, the chi-square distance gives higher weights to the 
rare  than to  the  common species in  the  calculation of  the 
distance. 

[Property demonstrated in the course on dissimilarities.]

We will  now look at the inßuence on CA biplots of species that 
are rare in the data set 1.

1 Rare species: species with small total abundance or with few occurrences in the data Þle.



        Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7
Site.1   45  10  15  10   3   2   0
Site.2   25   8  10   3   2   3   0
Site.3    7  15  20  12   5   0  10
Site.4   25  10  20   3   3   2   0
Site.5    7  15  10  10   2   3   0
Site.6   45   8  15  12   5   0  10

Sp.sums  154  66  90  50  20  10  20
Occur .    6   6   6   6   6   4   2

2.#In scaling 1 biplots, rare species with few occurrences may take 
extreme values, meaning that they may be located far from the origin. 
First example (artiÞcial data): 

Species 6 and 7 have the smallest numbers of occurrences.

Species 5 occurs everywhere but has a small total abundance.

.
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# Matrix V, species  in scaling  1 biplot

      Axis1  Axis2  Axis3  Axis4
Sp.1 -1.102  0.587 -0.201 -0.043
Sp.2  0.687 -1.243 -0.263 -0.303
Sp.3  0.316 -0.344  1.534  0.621
Sp.4  0.857 -0.203 -1.880  1.267
Sp.5  0.607  0.296  0.537 -0.311
Sp.6 -0.993 -2.902  -0.700 -4.468
Sp.7  2.540  2.795   0.026 -2.088

Rare species #6 and 7 (low occurrences) 
are located far from the center of the plot.

¥ Species 6 is found in sites {1,#2,#4,#5}; it 
pulls these sites to the lower-left corner.

¥  Species#7 is found in  sites  {3,  6};  it 
pulls these sites towards the upper-right 
corner of the plot.
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# Matrix V, species  in scaling  1 biplot

      Axis1  Axis2  Axis3  Axis4
Sp.1 -1.102  0.587 -0.201 -0.043
Sp.2  0.687 -1.243 -0.263 -0.303
Sp.3  0.316 -0.344  1.534  0.621
Sp.4  0.857 -0.203 -1.880  1.267
Sp.5  0.607  0.296  0.537 -0.311
Sp.6 -0.993 -2.902 -0.700 -4.468
Sp.7  2.540  2.795  0.026 -2.088
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¥ Rare species #5 (small abundances) is 
near the center on all axes because it  is 
present at all sites. 
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¥ Rare species Arct.peri is located far 
from the center of the plot.

¥  It  only  has  high  abundance at 

site#26, where it  is the only dominant 

species.

¥ Arct.peri pulls site 26 towards the 

upper-left corner of the plot.

Second example, the spider data Ð 

Two species are rare in occurrences 
and total abundance:

               Occurrences   Total abund.

Arct.peri 6                 39

Arct.lute 7                 26

CA type 1 biplot
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Rare  species Arct.lute is  near the 
center of the plot. 

¥  It  is found at 7  sites  that have  a 
diversiÞed and  average species 
composition. 

¥ # 7  species (including  Arct.lute), 
found in  several sites,  are  near the 
centre of the plot.

Second example, the spider data. 

Two species are rare in  occurrence 
and total abundance:

               Occurrences   Total abund.

Arct.peri 6                 39

Arct.lute 7                 26

CA type 1 biplot



3. Compared to common species, rare species with small occurrences 
have a small inßuence on the Þrst few eigenvalues and axes in CA. 

An efÞcient method to select and remove rare species from a data table 
was proposed by Daniel Borcard. This method is described in Legendre 
& Legendre (2012, Box 9.2, with permission of D. Borcard).

For  that reason,  rare  species can be removed from the  data  table 
without major change to the biplot.

Example:
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The example concerns Þsh biomass data:

47 underwater transects $ 156 Þsh species 

collected during underwater surveys by researchers Pierre Labrosse 
and  Eric  Clua (Secretariat of  the  PaciÞc  Community)  near the 

village of Manuka in the Tonga Islands, South PaciÞc.

Elimination of rare species: an example1

1 Legendre & Legendre (2012), Box 9.2, pp. 480-481.	

¥  The  species with  the  smallest number of  occurrences  were 
removed step by step. CA was recomputed at each step. 

¥ For each step, the total inertia was noted, as well as the Þrst few 
eigenvalues.
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61 species with 1 to 4 occurrences (out of 156 species) were removed 
step by step.

(a)

(a)!These 61 species generated 24% of the inertia in the data matrix 
subjected to eigenvalue decomposition by CA.

(b)

(b)!Decrease of individual eigenvalues: removing these 61 species had 
little effects on the Þrst four eigenvalues.

This example supports the statement above, that Òrare species can be 
removed from the data table without major change to the biplotÓ.
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4. An alternative method to reduce the inßuence of rare species is 
down-weighting  of  rare  species,  a  method  proposed  by  Hill 
(1979) and implemented in the DECORANA ordination program. It 
is also available in CANOCO.

In  R:  downweighting is  an  option  in  function  decorana()  of 
{vegan}. Also available in {vegan} in the stand-alone function 
downweight().



Arch effect, detrending and DCA

Species have unimodal distributions along environmental gradients.

Species populations succeeding one another along an environmental 
gradient form a continuum called coenocline.

A simulated coenocline along an environmental gradient (abscissa). 
From Whittaker (1972). 



Simulate a coenocline with function coenocline() of coenocliner: 
19 species that only differ by the positions of their uptimum values.

library ( coenocliner )

x <- seq (1, 100, 1)              # Ecological var. values
opt <- seq (from=5, to=95, by=5)  # Species optima along x
tol  <- rep(2.5, 19)              # Species tolerance
h <- rep(20, 19)                 # Maximum abundance

Y <- coenocline (x, responseModel  = " gaussian ",
     params  = cbind (opt = opt, tol  = tol , h = h),
     countModel  = " poisson ", expectation = TRUE)
plot(Y, type = "l", lty  = "solid", xlab ="Ecological 
     variable", ylab ="Abundance", main=" Coenocline ")
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There are 69% zeros in the data Þle (100 $ 19).

CA is an appropriate method for ordination of this type of data because the 
unimodal distribution of a species resembles a Gaussian function.

Exercise: The species symbols along CA axis 1 are in the same order as their ecological 
optima along the gradient. Generate the coenocline data (R code of the previous slide), 
analyse them with CA (function cca() of vegan), then represent the species in a biplot. 
Note: the species are not shown in the following two slides.
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Arch effect 

Ordination of the sites displaying 
a quadratic shape with the ends 
not folded inwards. 

Reason: the chi-square distance 
preserved in CA has an upper 
bound.

An arch is typical of coenoclines 
represented in CA ordinations.



-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Arch effect, coenocline, CA

CA1

CA
2

! (1,90)=5.62	

! (1,80)=5.62	

! (1,30)=5.62	

! (1,50)=5.62	

*	

*	

*	

*	

*	

*	

! (1,70)=5.62	

*	

! (1,20)=5.62	

*	

! (1,2)		=	0.04	
! (1,3)		=	0.13	
! (1,4)		=	0.32	
! (1,5)		=	0.71	
! (1,6)		=	1.41	
! (1,7)		=	2.46	
! (1,8)		=	3.68	
! (1,9)		=	4.67	
! (1,10)=	5.22	

"#$%&'	

! (1,60)=5.62	

Chi-square distances between Site!1 and selected sites along the coenocline. 
The  distance  reaches a  maximum  after 13  steps and  does not  increase 
thereafter. The plot reacts by forming an arch.



Horseshoe effect

An ordination plot displaying a quadratic shape with the ends folded inwards. 

¥ A horseshoe is typical of coenoclines represented in PCA ordinations.
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(a) Raw data: a wobbly horseshoe. The small number of species (19) in this 
simulation, compared to the number of sites (100), produces site vectors with 
irregular norms. This is reßected by a wobbly line in the PCA plot. 

(a)

(b) Hellinger-transformed data: regular horseshoe. After Hellinger transformation, 
site vectors have uniform lengths of 1, producing a regular horseshoe.

(b)



A post-treatment of CA results to stretch the arch and make it linear.

Detrending

© Legendre & Legendre (2012, Figure 9.12).

¥ Detrending by segments (Hill & Gauch, 1980): axis 1 is divided into 
an arbitrary number of segments. The mean of the group of sites in each 
segment is moved to the abscissa; that mean becomes 0 on axis 2.



Detrending is carried out in detrended correspondence analysis (DCA). 

See the  documentation  Þles  of  functions xdiss()  in  {mvpart}  and 
stepacross()  in  {vegan}  and  the  references therein.  Use  principal 
coordinate analysis (PCoA)  for  ordination  of  the  transformed Dext 
matrix.

! ! Comparative  and  simulation  studies have  strongly criticized 
detrending because it  distorts the ordination structure with no gain 
for interpretation. It is seldom used nowadays. 

See discussion in Legendre & Legendre (2012, pp. 486-487).

Alternative method to eliminate the arch effect 
Compute extended dissimilarities (DeÕath,  1999).  The modiÞed Dext 
matrix produces an ordination where the sites are ordered more linearly 
along the gradient than in the arch or in detrending by segments. 
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Details are found in Legendre & Legendre (2012, Section 9.2.7).

Algorithms for CA

CA is a statistical method of data analysis (not a statistical test).

As in PCA, three different algorithms (or methods of calculation) 
can be used to implement it:

! !Eigenvalue decomposition (EVD); eigen(#######) in R.

! !#An iterative algorithm developed by Clint & Jennings (1970) 
was adapted to correspondence analysis by Hill  (1973). It  was 
then used by ter Braak in the Canoco ordination package.

! !Singular value decomposition (SVD); svd(###) in R.

These two algorithms are interchangeable, although statisticians 
often prefer svd(), which offers greater numerical accuracy.

Q

!Q Q
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Choose an ordination method

¥ For community composition data, use correspondence analysis 
(CA) if  you want to emphasize the role of rare species in the 
ordination plot.

CA  is  the  correct  choice if  you expect rare  species to  be 
indicative of particular environmental conditions.

The  validity  of  this kind of  conclusion  will  depend on  the 
following  assumption:  the  rare  species have  been  estimated 
without bias, like the more common species. Is that the case?

¥ To obtain an ordination that gives the same importance to the 
common and  rare  species,  apply  the  Hellinger  or  chord 
transformation  to  the  community data  and  use  PCA.  See the 
courses on species transformations and on beta diversity.
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End of section


