Algebra of Principal Component Analysis

Data: \(\mathbf{Y} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \\ 5 & 0 \\ 7 & 6 \\ 9 & 2 \end{bmatrix} \)

Centre each column on its mean: \(\mathbf{Y}_c = [y - \bar{y}] = \begin{bmatrix} -3.2 & -1.6 \\ -2.2 & 1.4 \\ -0.2 & 2.6 \\ 1.8 & 3.4 \\ 3.8 & -0.6 \end{bmatrix} \)

Covariance matrix (2 variables):

\[
\mathbf{S} = \frac{1}{n-1} \mathbf{Y}_c' \mathbf{Y}_c = \begin{bmatrix} 8.2 & 1.6 \\ 1.6 & 5.8 \end{bmatrix}
\]

Equation for eigenvalues and eigenvectors of \(\mathbf{S} \):

\[(\mathbf{S} - \lambda_k \mathbf{I}) \mathbf{u}_k = \mathbf{0}\]

Eigenvalues: \(\lambda_1 = 9, \quad \lambda_2 = 5 \)

Matrix of eigenvalues: \(\mathbf{\Lambda} = \begin{bmatrix} 9 & 0 \\ 0 & 5 \end{bmatrix} \)

Matrix of eigenvectors:

\[
\mathbf{U} = \begin{bmatrix} 0.8944 & -0.4472 \\ 0.4472 & 0.8944 \end{bmatrix}
\]

Positions of the 5 objects in ordination space:

\[
\mathbf{F} = [y - \bar{y}] \mathbf{U}
\]
Principal component analysis (PCA)

Figure 9.2 Numerical example of principal component analysis. (a) Five objects are plotted with respect to descriptors \(y_1 \) and \(y_2 \). (b) After centring the data, the objects are now plotted with respect to \((y_1 - \bar{y}_1)\) and \((y_2 - \bar{y}_2)\), represented by dashed axes. (c) The objects are plotted with reference to principal axes I and II, which are centred with respect to the scatter of points. (d) The two systems of axes (b and c) can be superimposed after a rotation of \(26^\circ34'\).
Use the following matrices to draw biplots

Distance biplot (scaling 1): objects = F, variables = U

Correlation biplot (scaling 2): objects = G = FΛ⁻¹/², variables = U_{sc2} = UΛ¹/²

These two projections respect the biplot rule, that the product of the two projected matrices reconstruct the data Y:

Distance biplot: \(FU' = Y \) \hspace{1cm} Correlation biplot: \(G(UΛ^{1/2})' = Y \)
Data transformation

Transform physical variables (Ecology) or characters (Taxonomy)

- Univariate distributions are not symmetrical
 ⇒ Apply skewness-reduction transformation

- Variables are not in the same physical units
 ⇒ Apply standardization $z_i = \frac{y_i - \bar{y}}{s_y}$ or ranging $y'_i = \frac{y_i - y_{\text{min}}}{y_{\text{max}} - y_{\text{min}}}$

- Multistate qualitative variables
 ⇒ In some cases, transform them to dummy (binary) variables

Transform community composition data (Ecology)

(species presence-absence or abundance)

- Reduce asymmetry of distributions
 ⇒ Apply log$(y + c)$ transformation

- Make community composition data suitable for Euclidean-based ordination methods (PCA, RDA)
 ⇒ Use the chord, chi-square, or Hellinger transformations (Legendre & Gallagher 2001)
Some uses of principal component analysis (PCA)

- Two-dimensional ordination of the objects:
 - Sampling sites in ecology
 - Individuals or taxa in taxonomy

 ⇒ A 2-dimensional ordination diagram is an interesting graphical support for representing other properties of multivariate data, e.g., clusters.

- Detect outliers or erroneous data in data tables

- Find groups of variables that behave in the same way:
 - Species in ecology
 - Morphological/behavioural/molecular variables in taxonomy

- Simplify (collinear) data; remove noise

- Remove an identifiable component of variation
e.g., size factor in log-transformed morphological data
Algebra of Correspondence Analysis

Frequency data table \(\mathbf{Y} = \begin{bmatrix} f_{ij} \end{bmatrix} = \begin{bmatrix} 10 & 10 & 20 \\ 10 & 15 & 10 \\ 15 & 5 & 5 \end{bmatrix} \begin{bmatrix} 40 \\ 35 \\ 25 \end{bmatrix} \)

\(\mathbf{f}_{ij} = \begin{bmatrix} f_{ij} \\ f_{i+} \\ f_{+j} \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 40 \\ 35 \\ 25 \end{bmatrix} 100 = f_{++} \)

\(p_{ij} = f_{ij} / f_{++} \)
\(p_{i+} = f_{i+} / f_{++} \)
\(p_{+j} = f_{+j} / f_{++} \)

Matrix \(\mathbf{Q} = [q_{ij}] = \begin{bmatrix} p_{ij} - p_{i+}p_{+j} \\ \sqrt{p_{i+}p_{+j}} \end{bmatrix} = \frac{(O_{ij} - E_{ij})}{\sqrt{E_{ij}}} \)

Matrix \(\mathbf{Q} = \begin{bmatrix} -0.10690 & -0.05774 & 0.16036 \\ -0.06429 & 0.13887 & -0.06429 \\ 0.21129 & -0.09129 & -0.12667 \end{bmatrix} \)

Cross-product matrix: \(\mathbf{Q}'\mathbf{Q} = \begin{bmatrix} 0.06020 & -0.02204 & -0.03980 \\ -0.02204 & 0.03095 & -0.00661 \\ -0.03980 & -0.00661 & 0.04592 \end{bmatrix} \)

Compute eigenvalues and eigenvectors of \(\mathbf{Q}'\mathbf{Q} : \quad (\mathbf{Q}'\mathbf{Q} - \lambda_k \mathbf{I}) \mathbf{u}_k = 0 \)

Eigenvalues: \(\lambda_1 = 0.096, \lambda_2 = 0.041 \)

Matrix of eigenvalues: \(\mathbf{\Lambda} = \begin{bmatrix} 0.096 & 0 \\ 0 & 0.041 \end{bmatrix} \)

There are never more than \(k = \min(r - 1, c - 1) \) eigenvalues > 0 in CA

Matrix of eigenvectors of \(\mathbf{Q}'\mathbf{Q}_{(c\times c)} : \quad \mathbf{U}_{(c\times k)} = \begin{bmatrix} 0.78016 & 0.20336 \\ -0.20383 & -0.81145 \\ -0.59144 & 0.54790 \end{bmatrix} \)

Matrix of eigenvectors of \(\mathbf{Q}\mathbf{Q}'_{(r\times r)} : \quad \mathbf{\hat{U}}_{(r\times k)} = \mathbf{Q}\mathbf{U}\mathbf{\Lambda}^{-1/2} = \begin{bmatrix} -0.53693 & 0.55831 \\ -0.13043 & -0.79561 \\ 0.83349 & 0.23516 \end{bmatrix} \)
Compute matrices F and V for scaling 1 biplot, and \hat{V} and \hat{F} for scaling 2 biplot:

![CA biplot scaling type 1](image1)

![CA biplot scaling type 2](image2)

Calculation details

Compute matrices V, \hat{V}, F, and \hat{F} used in the ordination biplots:

\[
V_{(c\times k)} = D(p_{+j})^{-1/2} \ U \\
\hat{V}_{(r\times k)} = D(p_{i+})^{-1/2} \ \hat{U} \\
F_{(r\times k)} = \hat{V} \Lambda^{1/2} \\
\hat{F}_{(c\times k)} = V \Lambda^{1/2}
\]

where $p_{+j} = f_{+j}/f_{++}$ and $p_{i+} = f_{i+}/f_{++}$

Biplot, scaling type 1: plot F for sites, V for species:

- This projection preserves the chi-square distance among the sites.
- The sites are at the centroids (barycentres) of the species.

Biplot, scaling type 2: plot \hat{V} for sites, \hat{F} for species:

- This projection preserves the chi-square distance among the species.
- The species are at the centroids (barycentres) of the sites.