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Values of a variable observed over a delimited geographic area form a regionalized
variable (Matheron, 1965) or simply a surface (Oden et al., 1993; Legendre &
McArdle, 1997) if the sites where the variable has been observed may be viewed as a
sample from an underlying continuous surface. The second family of methods, called
surface pattern analysis, deals with the study of spatially continuous phenomena. The
spatial distributions of the variables are known, as usual, through sampling at discrete
sampling sites. One or several variables are observed or measured at the observation
sites, each site representing its surrounding portion of the geographic space. The
analysis of continuous surfaces, where pixels cover the whole map (including data
obtained by echolocation or remote sensing), is not specifically discussed here.

Surface pattern analysis includes a large number of methods developed to answer a
variety of questions (Table 13.1). Several of these methods are discussed in the present
Chapter. General references are: Cliff & Ord (1981), Ripley (1981), Upton &
Fingleton (1985, 1989), Griffith (1987), Legendre & Fortin (1989), and Rossi et al.
(1992). The geostatistical literature is briefly reviewed in Subsection 13.2.2. The
comparison of surfaces, i.e. univariate measures over the same area repeated at two or
more sampling times, has been discussed by Legendre & McArdle (1997).
Section 13.7 provides a list of computer programs available from researchers; most
methods for surface pattern analysis are not available in the major statistical packages.

Geographers have also developed line pattern analysis which is a topological
approach to the study of networks of connections among points. Examples are: roads,
telephone lines, and river networks.

For a point pattern, heterogeneity refers to the distribution of individuals across
space; one often compares the observed density variation of organisms to that expected
for randomly distributed objects. For a surface pattern, heterogeneity refers to the
variability of quantitative or qualitative descriptors across space. Dutilleul & Legendre
(1993) provide a summary of the main statistical tools available to ecologists to
quantify spatial heterogeneity in both the point pattern and the surface pattern cases.
Dutilleul (1993) describes in more detail how experimental designs can be
accommodated to the spatial heterogeneity found in nature; spatial heterogeneity may
be a nuisance for the experimenter, or a characteristic of interest. The analysis of
spatial patterns is the study of organized arrangements of [ecological] heterogeneity
across space.

13.1 Structure functions

Ecologists are interested in describing spatial structures in quantitative ways and
testing for the presence of spatial autocorrelation in data. The primary objective is to:

• either support the null hypothesis that no significant spatial autocorrelation is present
in a data set, or that none remains after detrending (Subsection 13.2.1) or after
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controlling for the effect of explanatory (e.g., environmental) variables, thus insuring
valid use of the standard univariate or multivariate statistical tests of hypotheses.

• or reject the null hypothesis and show that significant spatial autocorrelation is
present in the data, in order to use it in conceptual or statistical models. 

Tests of spatial autocorrelation coefficients may only support or reject the null
hypothesis of the absence of significant spatial structure. When significant spatial
structure is found, it may correspond, or not, to spatial autocorrelation (Section 1.1,
model b) — depending on the hypothesis of the investigator.

Table 13.1 Surface pattern analysis: research objectives and related numerical methods. Modified from
Legendre & Fortin (1989).

Research objective Numerical methods

1) Description of spatial structures
and testing for the presence of
spatial autocorrelation
(Descriptions using structure
functions should always be
complemented by maps.)

2) Mapping; estimation of values at
given locations

3) Modelling species-environment
relationships while taking spatial
structures into account

4) Performing valid statistical tests
on autocorrelated data

Univariate structure functions: correlogram,
variogram, etc. (Section 13.1)

Multivariate structure functions: Mantel
correlogram (Section 13.1)

Testing for a gradient in multivariate data:
(1) constrained (canonical) ordination between the
multivariate data and the geographic coordinates
of the sites (Section 13.4). (2) Mantel test between
ecological distances (computed from the
multivariate data) and geographic distances
(Subsection 10.5.1)

Univariate data: local interpolation map; trend-
surface map (global statistical model) (Sect. 13.2)

Multivariate data: clustering with spatial
contiguity constraint, search for boundaries
(Section 13.3); interpolated map of the 1st (2nd,
etc.) ordination axis (Section 13.4); multivariate
trend-surface map obtained by constrained
ordination (canonical analysis) (Section 13.4)

Raw data tables: partial canonical analysis
(Section 13.5)

Distance matrices: partial Mantel analysis
(Section 13.6)

Subsection 1.1.1
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Spatial structures may be described through structure functions, which allow one to
quantify the spatial dependence and partition it amongst distance classes.
Interpretation of this description is usually supported by maps of the univariate or
multivariate data (Sections 13.2 to 13.4). The most commonly used structure functions
are correlograms, variograms, and periodograms. 

A correlogram is a graph in which autocorrelation values are plotted, on the
ordinate, against distance classes among sites on the abscissa. Correlograms (Cliff &
Ord 1981) can be computed for single variables (Moran’s I or Geary’s c
autocorrelation coefficients, Subsection 1) or for multivariate data (Mantel
correlogram, Subsection 5); both types are described below. In all cases, a test of
significance is available for each individual autocorrelation coefficient plotted in a
correlogram.

Similarly, a variogram is a graph in which semi-variance is plotted, on the ordinate,
against distance classes among sites on the abscissa (Subsection 3). In the
geostatistical tradition, semi-variance statistics are not tested for significance, although
they could be through the test developed for Geary’s c, when the condition of second-
order stationarity is satisfied (Subsection 13.1.1). Statistical models may be fitted to
variograms (linear, exponential, spherical, Gaussian, etc.); they allow the investigator
to relate the observed structure to hypothesized generating processes or to produce
interpolated maps by kriging (Subsection 13.2.2). 

Because they measure the relationship between pairs of observation points located
a certain distance apart, correlograms and variograms may be computed either for
preferred geographic directions or, when the phenomenon is assumed to be isotropic in
space, in an all-directional way. 

A two-dimensional Schuster (1898) periodogram may be computed when the
structure under study is assumed to consist of a combination of sine waves propagated
through space. The basic idea is to fit sines and cosines of various periods, one period
at a time, and to determine the proportion of the series’ variance (r2) explained by each
period. In periodograms, the abscissa is either a period or its inverse, a frequency; the
ordinate is the proportion of variance explained. Two-dimensional periodograms may
be plotted for all combinations of directions and spatial frequencies. The technique is
described Priestley (1964), Ripley (1981), Renshaw and Ford (1984) and Legendre &
Fortin (1989). It is not discussed further in the present book.

1 — Spatial correlograms

For quantitative variables, spatial autocorrelation may be measured by either Moran’s I
(1950) or Geary’s c (1954) spatial autocorrelation statistics (Cliff & Ord, 1981):
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Moran’s I:    for h ≠ i (13.1)

Geary’s c:    for h ≠ i (13.2)

The yh’s and yi’s are the values of the observed variable at sites h and i. Before
computing spatial autocorrelation coefficients, a matrix of geographic distances
D = [Dhi] among observation sites must be calculated. In the construction of a
correlogram, spatial autocorrelation coefficients are computed, in turn, for the various
distance classes d. The weights whi are Kronecker deltas (as in eq. 7.20); the weights
take the value whi  = 1 when sites h and i are at distance d and whi = 0 otherwise. In this
way, only the pairs of sites (h, i) within the stated distance class (d) are taken into
account in the calculation of any given coefficient. This approach is illustrated in
Fig. 13.3. W is the sum of the weights whi for the given distance class, i.e. the number
of pairs used to calculate the coefficient. For a given distance class, the weights wij are
written in a (n × n) matrix W. Jumars et al. (1977) present ecological examples where
the distance–1 or distance–2 among adjacent sites is used for weight instead of 1’s.

The numerators of eqs. 13.1 and 13.2 are written with summations involving each
pair of objects twice; in eq. 13.2 for example, the terms (yh – yi)

2 and (yi – yh)2 are
both used in the summation. This allows for cases where the distance matrix D  or the
weight matrix W is asymmetric. In studies of the dispersion of pollutants in soil, for
instance, drainage may make it more difficult to go from A to B than from B to A; this
may be recorded as a larger distance from A to B than from B to A. In spatio-temporal
analyses, an observed value may influence a later value at the same or a different site,
but not the reverse. An impossible connection may be coded by a very large value of
distance. In most applications, however, the geographic distance matrix among sites is
symmetric and the coefficients may be computed from the half-matrix of distances; the
formulae remain the same, in that case, because W, as well as the sum in the numerator,
are half the values computed over the whole distance matrix D (except h = i). 

One may use distances along a network of connections (Subsection 13.3.1) instead
of straight-line geographic distances; this includes the “chess moves” for regularly-
spaced points as obtained from systematic sampling designs: rook’s, bishop’s, or
king’s connections (see Fig. 13.19). For very broad-scale studies, involving a whole
ocean for instance, “great-circle distances”, i.e. distances along earth’s curved surface,
should be used instead of straight-line distances through the earth crust.
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Moran’s I formula is related to Pearson’s correlation coefficient; its numerator is a
covariance, comparing the values found at all pairs of points in turn, while its
denominator is the maximum-likelihood estimator of the variance (i.e. division by n
instead of n – 1); in Pearson’s r, the denominator is the product of the standard
deviations of the two variables (eq. 4.7), whereas in Moran’s I there is only one
variable involved. Moran’s I mainly differs from Pearson’s r in that the sums in the
numerator and denominator of eq. 13.1 do not involve the same number of terms; only
the terms corresponding to distances within the given class are considered in the
numerator whereas all pairs are taken into account in the denominator. Moran’s I
usually takes values in the interval [–1, +1] although values lower than –1 or higher
than +1 may occasionally be obtained. Positive autocorrelation in the data translates
into positive values of I; negative autocorrelation produces negative values.

Figure 13.3 Construction of correlograms. Left: data series observed along a single geographic axis
(10 equispaced observations). Moran’s I and Geary’s c statistics are computed from pairs of
observations found at preselected distances (d = 1, d = 2, d = 3, etc.). Right: correlograms are
graphs of the autocorrelation statistics plotted against distance. Dark squares: significant
autocorrelation statistics (p ≤ 0.05). Lower right: histogram showing the number of pairs in each
distance class. Coefficients for the larger distance values (grey zones in correlograms) should
not be considered in correlograms, nor interpreted, because they are based on a small number of
pairs (test with low power) and only include the pairs of points bordering the series or surface.
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Readers who are familiar with correlograms in time series analysis will be
reassured to know that, when a problem involves equispaced observations along a
single physical dimension, as in Fig. 13.3, calculating Moran’s I for the different
distance classes is nearly the same as computing the autocorrelation coefficient of time
series analysis (Fig. 12.5, eq. 12.6); a small numeric difference results from the
divisions by (n – k – 1) and (n – 1), respectively, in the numerator and denominator of
eq. 12.6, whereas division is by (n – k ) and (n ), respectively, in the numerator and
denominator of Moran’s I formula (eq. 13.1).

Geary’s c coefficient is a distance-type function; it varies from 0 to some
unspecified value larger than 1. Its numerator sums the squared differences between
values found at the various pairs of sites being compared. A Geary’s c correlogram
varies as the reverse of a Moran’s I correlogram; strong autocorrelation produces high
values of I and low values of c (Fig. 13.3). Positive autocorrelation translates in values
of c between 0 and 1 whereas negative autocorrelation produces values larger than 1.
Hence, the reference ‘no correlation’ value is c = 1 in Geary’s correlograms.

For sites lying on a surface or in a volume, geographic distances do not naturally
fall into a small number of values; this is true for regular grids as well as random or
other forms of irregular sampling designs. Distance values must be grouped into
distance classes; in this way, each spatial autocorrelation coefficient can be computed
using several comparisons of sampling sites. 

Numerical example. In Fig. 13.4 (artificial data), 10 sites have been located at random into
a 1-km2 sampling area. Euclidean (geographic) distances were computed among sites. The
number of classes is arbitrary and left to the user’s decision. A compromise has to be made
between resolution of the correlogram (more resolution when there are more, narrower classes)
and power of the test (more power when there are more pairs in a distance class). Sturge’s rule is
often used to decide about the number of classes in histograms; it was used here and gave:

Number of classes = 1 + 3.322log10(m) = 1 + 3.3log10(45) = 6.46 (13.3)

where m is the number of distances in the upper triangular matrix and 3.322 is 1/log102; the
number was rounded to the nearest integer (i.e. 6). The distance matrix was thus recoded into
6 classes, ascribing class numbers (1 to 6) to all distances within a class of the histogram. 

An alternative to distance classes with equal widths would be to create distance
classes containing the same number of pairs (notwithstanding tied values); distance
classes formed in this way are of unequal widths. The advantage is that the tests of
significance have the same power across all distance classes because they are based
upon the same number of pairs of observations. The disadvantages are that limits of
the distance classes are more difficult to find and correlograms are harder to draw.

Spatial autocorrelation coefficients can be tested for significance and confidence
intervals can be computed. With proper correction for multiple testing, one can
determine whether a significant spatial structure is present in the data and what are the
distance classes showing significant positive or negative autocorrelation. Tests of
significance require, however, that certain conditions specified below be fulfilled. 
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The tests require that the condition of second-order stationarity be satisfied. This
rather strong condition states that the expected value (mean) and spatial covariance
(numerator of eq. 13.1) of the variable is the same all over the study area, and the
variance (denominator of eq. 13.1) is finite. The value of the autocorrelation function
depends only on the length and orientation of the vector between any two points, not
on its position in the study area (David, 1977).

A relaxed form of stationarity hypothesis, the intrinsic assumption, states that the
differences (yh – yi) for any distance d (in the numerator of eq. 13.2) must have zero
mean and constant and finite variance over the study area, independently of the
location where the differences are calculated. Here, one considers the increments of the
values of the regionalized variable instead of the values themselves (David, 1977). As
shown below, the variance of the increments is the variogram function. In layman’s
terms, this means that a single autocorrelation function is adequate to describe the
entire surface under study. An example where the intrinsic assumption does not hold is

Figure 13.4 Calculation of distance classes, artificial data. (a) Map of 10 sites in a 1-km2 sampling area.
(b) Geographic distance matrix (D, in km). (c) Frequency histogram of distances (classes 1 to 6)
for the upper (or lower) triangular portion of D. (d) Distances recoded into 6 classes.

(a)  0.00 0.52 0.74 0.20 0.31 0.29 0.72 0.72 0.59 0.23

 0.52 0.00 0.27 0.41 0.27 0.75 0.52 0.25 0.45 0.53

 0.74 0.27 0.00 0.58 0.44 1.00 0.74 0.37 0.70 0.67

 0.20 0.41 0.58 0.00 0.15 0.49 0.76 0.65 0.63 0.12

 0.31 0.27 0.44 0.15 0.00 0.59 0.68 0.51 0.57 0.26

 0.29 0.75 1.00 0.49 0.59 0.00 0.76 0.90 0.64 0.50

 0.72 0.52 0.74 0.76 0.68 0.76 0.00 0.40 0.13 0.87

 0.72 0.25 0.37 0.65 0.51 0.90 0.40 0.00 0.39 0.77

 0.59 0.45 0.70 0.63 0.57 0.64 0.13 0.39 0.00 0.74

 0.23 0.53 0.67 0.12 0.26 0.50 0.87 0.77 0.74 0.00
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a region which is half plain and half mountains; such a region should be divided in two
subregions in which the variable “altitude” could be modelled by separate
autocorrelation functions. This condition must always be met when variograms or
correlograms (including multivariate Mantel correlograms) are computed, even for
descriptive purpose.

Cliff & Ord (1981) describe how to compute confidence intervals and test the
significance of spatial autocorrelation coefficients. For any normally distributed
statistic Stat, a confidence interval at significance level α is obtained as follows:

(13.4)

For significance testing with large samples, a one-tailed critical value Statα at
significance level α is obtained as follows:

(13.5)

It is possible to use this approach because both I and c are asymptotically normally
distributed for data sets of moderate to large sizes (Cliff & Ord, 1981). Values zα/2  or
zα are found in a table of standard normal deviates. Under the hypothesis (H0) of
random spatial distribution of the observed values yi , the expected values (E) of
Moran’s I and Geary’s c are: 

E(I) = –(n – 1)–1    and   E(c) = 1 (13.6)

Under the null hypothesis, the expected value of Moran’s I approaches 0 as n
increases. The variances are computed as follows under a randomization assumption,
which simply states that, under H0, the observations yi are independent of their
positions in space and, thus, are exchangeable:

(13.7)
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In these equations,

•  (there is a term of this sum for each cell of matrix W);

• 

•  measures the kurtosis of the distribution;

• W is as defined in eqs. 13.1 and 13.2.

In most cases in ecology, tests of spatial autocorrelation are one-tailed because the
sign of autocorrelation is stated in the ecological hypothesis; for instance, contagious
biological processes such as growth, reproduction, and dispersal, all suggest that
ecological variables are positively autocorrelated at short distances. To carry out an
approximate test of significance, select a value of α (e.g. α = 0.05) and find zα in a
table of the standard normal distribution (e.g. z0.05 = +1.6452). Critical values are
found as in eq. 13.5, with a correction factor that becomes important when n is small:

•  in all cases, using the value in the upper tail of the z
distribution when testing for positive autocorrelation (e.g. z0.05 = +1.6452) and the
value in the lower tail in the opposite case (e.g. z0.05 = –1.6452).

•  when c < 1 (positive autocorrelation), using the value in the
lower tail of the z distribution (e.g. z0.05 = –1.6452).

•  when c > 1 (negative autocorrelation), using
the value in the upper tail of the z distribution (e.g. z0.05 = +1.6452).

The value taken by the correction factor kα  depends on the values of n and W. If
, then ; otherwise, kα = 1. If the test

is two-tailed, use α* = α/2 to find zα* and kα* before computing critical values. These
corrections are based upon simulations reported by Cliff & Ord (1981, section 2.5).

Other formulas are found in Cliff & Ord (1981) for conducting a test under the
assumption of normality, where one assumes that the yi’s result from n independent
draws from a normal population. When n is very small, tests of I and c should be
conducted by randomization (Section 1.2). 

Moran’s I and Geary’s c are sensitive to extreme values and, in general, to
asymmetry in the data distributions, as are the related Pearson’s r and Euclidean
distance coefficients. Asymmetry increases the variance of the data. It also increases
the kurtosis and hence the variance of the I and c coefficients (eqs. 13.7 and 13.8); this
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makes it more difficult to reach significance in statistical tests. So, practitioners usually
attempt to normalize the data before computing correlograms and variograms.

Statistical testing in correlograms implies multiple testing since a test of
significance is carried out for each autocorrelation coefficient. Oden (1984) has
developed a Q statistic to test the global significance of spatial correlograms; his test is
an extension of the Portmanteau Q-test used in time series analysis (Box & Jenkins,
1976). An alternative global test is to check whether the correlogram contains at least
one autocorrelation statistic which is significant at the Bonferroni-corrected
significance level (Box 1.3). Simulations in Oden (1984) show that the power of the Q-
test is not appreciably greater than the power of the Bonferroni procedure, which is
computationally a lot simpler. A practical question remains, though: how many
distance classes should be created? This determines the number of simultaneous tests
that are carried out. More classes mean more resolution but fewer pairs per class and,
thus, less power for each test; more classes also mean a smaller Bonferroni-corrected
α' level, which makes it more difficult for a correlogram to reach global significance.

When the overall test has shown global significance, one may wish to identify the
individual autocorrelation statistics that are significant, in order to reach an
interpretation (Subsection 2). One could rely on Bonferroni-corrected tests for all
individual autocorrelation statistics, but this approach would be too conservative; a
better solution is to use Holm’s correction procedure (Box 1.3). Another approach is
the progressive Bonferroni correction described in Subsection 12.4.2; it is only
applicable when the ecological hypothesis indicates that significant autocorrelation is
to be expected in the smallest distance classes and the purpose of the analysis is to
determine the extent of the autocorrelation (i.e. which distance class it reaches). With
the progressive Bonferroni approach, the likelihood of emergence of significant values
decreases as one proceeds from left to right, i.e. from the small to the large distance
classes of the correlogram. One does not have to limit the correlogram to a small
number of classes to reduce the effect of the correction, as it is the case with Oden’s
overall test and with the Bonferroni and Holm correction methods. This approach will
be used in the examples that follow.

Autocorrelation coefficients and tests of significance also exist for qualitative
(nominal) variables (Cliff & Ord 1981); they have been used to analyse for instance
spatial patterns of sexes in plants (Sakai & Oden 1983; Sokal & Thomson 1987).
Special types of spatial autocorrelation coefficients have been developed to answer
specific problems (e.g. Galiano 1983; Estabrook & Gates 1984). The paired-quadrat
variance method, developed by Goodall (1974) to analyse spatial patterns of
ecological data by random pairing of quadrats, is related to correlograms.

2 — Interpretation of all-directional correlograms

When the autocorrelation function is the same for all geographic directions
considered, the phenomenon is said to be isotropic. Its opposite is anisotropy. When a
variable is isotropic, a single correlogram may be computed over all directions of the

Isotropy
Anisotropy
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study area. The correlogram is said to be all-directional or omnidirectional.
Directional correlograms, which are computed for a single direction of space, are
discussed together with anisotropy and directional variograms in Subsection 3. 

Correlograms are analysed mostly by looking at their shapes. Examples will help
clarify the relationship between spatial structures and all-directional correlograms. The
important message is that, although correlograms may give clues as to the underlying
spatial structure, the information they provide is not specific; a blind interpretation
may often be misleading and should always be supported by maps (Section 13.2).

Numerical example. Artificial data were generated that correspond to a number of spatial
patterns. The data and resulting correlograms are presented in Fig. 13.5.   

• Nine bumps — The surface in Fig. 13.5a is made of nine bi-normal curves. 225 points were
sampled across the surface using a regular 15 × 15 grid (Fig. 13.5f). The “height” was noted at
each sampling point. The 25200 distances among points found in the upper-triangular portion of
the distance matrix were divided into 16 distance classes, using Sturge’s rule (eq. 13.3), and

Figure 13.5 Spatial autocorrelation analysis of artificial spatial structures shown on the left: (a) nine bumps;
(b) waves; (c) a single bump. Centre and right: all-directional correlograms. Dark squares:
autocorrelation statistics that remain significant after progressive Bonferroni correction
(α = 0.05); white squares: non-significant values.
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correlograms were computed. According to Oden’s test, the correlograms are globally
significant at the α = 5% level since several individual values are significant at the Bonferroni-
corrected level α' = 0.05/16 = 0.00312. In each correlogram, the progressive Bonferroni
correction method was applied to identify significant spatial autocorrelation coefficients: the
coefficient for distance class 1 was tested at the α = 0.05 level; the coefficient for distance class
2 was tested at the α' = 0.05/2 level; and, more generally, the coefficient for distance class k was
tested at the α' = 0.05/k level. Spatial autocorrelation coefficients are not reported for distance
classes 15 and 16 (60 and 10 pairs, respectively) because they only include the pairs of points
bordering the surface, to the exclusion of all other pairs.

There is a correspondence between individual significant spatial autocorrelation coefficients
and the main elements of the spatial structure. The correspondence can clearly be seen in this
example, where the data generating process is known. This is not the case when analysing field
data, in which case the existence and nature of the spatial structures must be confirmed by
mapping the data. The presence of several equispaced patches produces an alternation of

Figure 13.5 (continued) Spatial autocorrelation analysis of artificial spatial structures shown on the left:
(d) gradient; (e) step. (h) All-directional correlogram of random values. (f) Sampling grid used
on each of the artificial spatial structures to obtain 225 “observed values” for spatial
autocorrelation analysis. (g) Histogram showing the number of pairs in each distance class.
Distances, from 1 to 19.8 in units of the sampling grid, were grouped into 16 distance classes.
Spatial autocorrelation statistics (I or c) are not shown for distance classes 15 and 16; see text.
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significant positive and negative values along the correlograms. The first spatial autocorrelation
coefficient, which is above 0 in Moran’s correlogram and below 1 in Geary’s, indicates positive
spatial autocorrelation in the first distance class; the first class contains the 420 pairs of points
that are at distance 1 of each other on the grid (i.e. the first neighbours in the N-S or E-W
directions of the map). Positive and significant spatial autocorrelation in the first distance class
confirms that the distance between first neighbours is smaller than the patch size; if the distance
between first neighbours in this example was larger than the patch size, first neighbours would
be dissimilar in values and autocorrelation would be negative for the first distance class. The
next peaking positive autocorrelation value (which is smaller than 1 in Geary’s correlogram)
occurs at distance class 5, which includes distances from 4.95 to 6.19 in grid units; this
corresponds to positive autocorrelation between points located at similar positions on
neighbouring bumps, or neighbouring troughs; distances between successive peaks are 5 grid
units in the E-W or N-S directions. The next peaking positive autocorrelation value occurs at
distance class 9 (distances from 9.90 to 11.14 in grid units); it includes value 10, which is the
distance between second-neighbour bumps in the N-S and E-W directions. Peaking negative
autocorrelation values (which are larger than 1 in Geary’s correlogram) are interpreted in a
similar way. The first such value occurs at distance class 3 (distances from 2.48 to 3.71 in grid
units); it includes value 2.5, which is the distance between peaks and troughs in the N-S and E-
W directions on the map. If the bumps were unevenly spaced, the correlograms would be similar
for the small distance classes, but there would be no other significant values afterwards.

The main problem with all-directional correlograms is that the diagonal comparisons are
included in the same calculations as the N-S and E-W comparisons. As distances become larger,
diagonal comparisons between, say, points located near the top of the nine bumps tend to fall in
different distance classes than comparable N-S or E-W comparisons. This blurs the signal and
makes the spatial autocorrelation coefficients for larger distance classes less significant and
interpretable.

• Wave (Fig. 13.5b) — Each crest was generated as a normal curve. Crests were separated by
five grid units; the surface was constructed in this way to make it comparable to Fig. 13.5a. The
correlograms are nearly indistinguishable from those of the nine bumps. All-directional
correlograms alone cannot tell apart regular bumps from regular waves; directional
correlograms or maps are required.

• Single bump (Fig. 13.5c) — One of the normal curves of Fig. 13.5a was plotted alone at the
centre of the study area. Significant negative autocorrelation, which reaches distance classes 6 or
7, delimits the extent of the “range of influence” of this single bump, which covers half the study
area. It is not limited here by the rise of adjacent bumps, as this was the case in (a).

• Linear gradient (Fig. 13.5d) — The correlogram is monotonic decreasing. Nearly all
autocorrelation values in the correlograms are significant. 

There are actually two kinds of gradients (Legendre, 1993). “True gradients”, on the one
hand, are deterministic structures. They correspond to generating model 2 of Subsection 1.1.1
(eq. 1.2) and can be modelled using trend-surface analysis (Subsection 13.2.1). The observed
values have independent error terms, i.e. error terms which are not autocorrelated. “False
gradients”, on the other hand, are structures that may look like gradients, but actually correspond
to autocorrelation generated by some spatial process (model 1 of Subsection 1.1.1; eq. 1.1).
When the sampling area is small relative to the range of influence of the generating process, the
data generated by such a process may look like a gradient. 

True, false
gradient
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In the case of “true gradients”, spatial autocorrelation coefficients should not be tested for
significance because the condition of second-order stationarity is not satisfied (definition in
previous Subsection); the expected value of the mean is not the same over the whole study area.
In the case of “false gradients”, however, tests of significance are warranted. For descriptive
purposes, correlograms may still be computed for “true gradients” (without tests of significance)
because the intrinsic assumption is satisfied. One may also choose to extract a “true gradient”
using trend-surface analysis, compute residuals, and look for spatial autocorrelation among the
residuals. This is equivalent to trend extraction prior to time series analysis (Section 12.2). 

How does one know whether a gradient is “true” or “false”? This is a moot point. When the
process generating the observed structure is known, one may decide whether it is likely to have
generated spatial autocorrelation in the observed data, or not. Otherwise, one may empirically
look at the target population of the study. In the case of a spatial study, this is the population of
potential sites in the larger area into which the study area is embedded, the study area
representing the statistical population about which inference can be made. Even from sparse or
indirect data, a researcher may form an opinion as to whether the observed gradient is
deterministic (“true gradient”) or is part of a landscape displaying autocorrelation at broader
spatial scale (“false gradient”).

• Step (Fig. 13.5e) — A step between two flat surfaces is enough to produce a correlogram
which is indistinguishable, for all practical purposes, from that of a gradient. Correlograms
alone cannot tell apart regular gradients from steps; maps are required. As in the case of
gradients, there are “true steps” (deterministic) and “false steps” (resulting from an
autocorrelated process), although the latter is rare. The presence of a sharp discontinuity in a
surface generally indicates that the two parts should be subjected to separate analyses. The
methods of boundary detection and constrained clustering (Section 13.3) may help detect such
discontinuities and delimit homogeneous areas prior to spatial autocorrelation analysis.

• Random values (Fig. 13.5h) — Random numbers, drawn from a standard normal distribution,
were generated for each point of the grid and used as the variable to be analysed. Random data
are said to represent a “pure nugget effect” in geostatistics. The autocorrelation coefficients were
small and non-significant at the 5% level. Only the Geary correlogram is presented.

Sokal (1979) and Cliff & Ord (1981) describe, in general terms, where to expect
significant values in correlograms, for some spatial structures such as gradients and
large or small patches. Their summary tables are in agreement with the test examples
above. The absence of significant coefficients in a correlogram must be interpreted
with caution, however:

• It may indicate that the surface under study is free of spatial autocorrelation at the
study scale. Beware: this conclusion is subject to type II (or β) error. Type II error
depends on the power of the test which is a function of (1) the α significance level,
(2) the size of effect (i.e. the minimum amount of autocorrelation) one wants to detect,
(3) the number of observations (n), and (4) the variance of the sample (Cohen, 1988):

Power = (1 – β) = f(α, size of effect, n, )

Is the test powerful enough to warrant such a conclusion? Are there enough
observations to reach significance? The easiest way to increase the power of a test, for
a given variable and fixed α, is to increase n.

s x
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• It may indicate that the sampling design is inadequate to detect the spatial
autocorrelation that may exist in the system. Are the grain size, extent and sampling
interval (Section 13.0) adequate to detect the type of autocorrelation one can
hypothesize from knowledge about the biological or ecological process under study?

Ecologists can often formulate hypotheses about the mechanism or process that
may have generated a spatial phenomenon and deduct the shape that the resulting
surface should have. When the model specifies a value for each geographic position
(e.g. a spatial gradient), data and model can be compared by correlation analysis. In
other instances, the biological or ecological model only specifies process generating
the spatial autocorrelation, not the exact geographic position of each resulting value.
Correlograms may be used to support or reject the biological or ecological hypothesis.
As in the examples of Fig. 13.5, one can construct an artificial model-surface
corresponding to the hypothesis, compute a correlogram of that surface, and compare
the correlograms of the real and model data. For instance, Sokal et al. (1997a)
generated data corresponding to several gene dispersion mechanisms in populations
and showed the kind of spatial correlogram that may be expected from each model.
Another application concerning phylogenetic patterns of human evolution in Eurasia
and Africa (space-time model) is found in Sokal et al. (1997b).

Bjørnstad & Falck (1997) and Bjørnstad et al. (1998) proposed a spline
correlogram which provides a continuous and model-free function for the spatial
covariance. The spline correlogram may be seen as a modification of the
nonparametric covariance function of Hall and co-workers (Hall & Patil, 1994; Hall et
al., 1994). A bootstrap algorithm estimates the confidence envelope of the entire
correlogram or derived statistics. This method allows the statistical testing of the
similarity between correlograms of real and simulated (i.e. model) data.

Ecological application  13.1a

During a study of the factors potentially responsible for the choice of settling sites of Balanus
crenatus larvae (Cirripedia) in the St. Lawrence Estuary (Hudon et al. , 1983), plates of artificial
substrate (plastic laminate) were subjected to colonization in the infralittoral zone. Plates were
positioned vertically, parallel to one another. A picture was taken of one of the plates after a 3-
month immersion at a depth of 5 m below low tide, during the summer 1978. The picture was
divided into a (10 × 15) grid, for a total of 150 pixels of 1.7 × 1.7 cm. Barnacles were counted by
C. Hudon and P. Legendre for the present Ecological application (Fig. 13.6a; unpublished in op.
cit.). The hypothesis to be tested is that barnacles have a patchy distribution. Barnacles are
gregarious animals; their larvae are chemically attracted to settling sites by arthropodine
secreted by settled adults (Gabbott & Larman, 1971).

A gradient in larval concentration was expected in the top-to-bottom direction of the plate
because of the known negative phototropism of barnacle larvae at the time of settlement
(Visscher, 1928). Some kind of border effect was also expected because access to the centre of
the plates located in the middle of the pack was more limited than to the fringe. These large-
scale effects create violations to the condition of second-order stationarity. A trend-surface
equation (Subsection 13.2.1) was computed to account for it, using only the Y coordinate (top-
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to-bottom axis). Indeed, a significant trend surface was found, involving Y and Y2, that
accounted for 10% of the variation. It forecasted high barnacle concentration in the bottom part
of the plate and near the upper and lower margins. Residuals from this equation were calculated
and used in spatial autocorrelation analysis.

Euclidean distances were computed among pixels; following Sturge’s rule (eq. 13.3), the
distances were divided into 14 classes (Fig. 13.6b). Significant positive autocorrelation was
found in the first distance classes of the correlograms (Fig. 13.6c, d), supporting the hypothesis
of patchiness. The size of the patches, or “range of influence” (i.e. the distance between zones of
high and low concentrations), is indicated by the distance at which the first maximum negative
autocorrelation value is found. This occurs in classes 4 and 5, which corresponds to a distance of
about 5 in grid units, or 8 to 10 cm. The patches of high concentration are shaded on the map of
the plate of artificial substrate (Fig. 13.6a).

In anisotropic situations, directional correlograms should be computed in two or
several directions. Description of how the pairs of points are chosen is deferred to
Subsection 3 on variograms. One may choose to represent either a single, or several of

Figure 13.6 (a) Counts of adult barnacles in 150 (1.7 × 1.7 cm) pixels on a plate of artificial substrate
(17 × 25.5 cm). The mean concentration is 6.17 animals per pixel; pixels with counts ≥ 7 are
shaded to display the aggregates. (b) Histogram of the number of pairs in each distance class.
(c) Moran’s correlogram. (d) Geary’s correlogram. Dark squares: autocorrelation statistics that
remain significant after progressive Bonferroni correction (α = 0.05); white squares: non-
significant values. Coefficients for distance classes 13 and 14 are not given because they only
include the pairs of points bordering the surface. Distances are also given in grid units and cm.
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these correlograms, one for each of the aiming geographic directions, as seems fit for
the problem at hand. A procedure for representing in a single figure the directional
correlograms computed for several directions of a plane has been proposed by Oden &
Sokal (1986); Legendre & Fortin (1989) give an example for vegetation data. Another
method is illustrated in Rossi et al. (1992).

Another way to approach anisotropic problems is to compute two-dimensional
spectral analysis. This method, described by Priestley (1964), Rayner (1971), Ford
(1976), Ripley (1981) and Renshaw & Ford (1984), differs from spatial
autocorrelation analysis in the structure function it uses. As in time-series spectral
analysis (Section 12.5), the method assumes the data to be stationary (second-order
stationarity; i.e. no “true gradient” in the data) and made of a combination of sine
patterns. An autocorrelation function rdX,dY for all combinations of lags (dX, dY) in the
two geographic axes of a plane, as well as a periodogram with intensity I for all
combinations of frequencies in the two directions of the plane, are computed. Details
of the calculations are also given in Legendre & Fortin (1989), with an example.

3 — Variogram

Like correlograms, semi-variograms (called variograms for simplicity) decompose the
spatial (or temporal) variability of observed variables among distance classes. The
structure function plotted as the ordinate, called semi-variance, is the numerator of
eq. 13.2:

   for h ≠ i (13.9)

or, for symmetric distance and weight matrices,

(13.10)

γ(d) is thus a non-standardized form of Geary’s c coefficient. γ may be seen as a
measure of the error mean square of the estimate of yi using a value yh distant from it
by d. The two forms lead to the same numerical value in the case of symmetric
distance and weight matrices. The calculation is repeated for different values of d. This
provides the sample variogram, which is a plot of the empirical values of variance γ(d)
as a function of distance d. 

The equations usually found in the geostatistical literature look a bit different, but
they correspond to the same calculations:
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Both of these expressions mean that pairs of values are selected to be at distance d of
each other; there are W(d) such pairs for any given distance class d. The condition
dhi ≈ d means that distances may be grouped into distance classes, placing in class d
the individual distances dhi that are approximately equal to d. In directional variograms
(below), d is a directional measure of distance, i.e. taken in a specified direction only.
The semi-variance function is often called the variogram in the geostatistical literature.
When computing a variogram, one assumes that the autocorrelation function applies to
the entire surface under study (intrinsic hypothesis, Subsection 13.1.1).

Generally, variograms tend to level off at a sill which is equal to the variance of the
variable (Fig. 13.7); the presence of a sill implies that the data are second-order
stationary. The distance at which the variance levels off is referred to as the range
(parameter a); beyond that distance, the sampling units are not spatially correlated.
The discontinuity at the origin (non–zero intercept) is called the nugget effect; the
geostatistical origin of the method transpires in that name. It corresponds to the local
variation occurring at scales finer than the sampling interval, such as sampling error,
fine-scale spatial variability, and measurement error. The nugget effect is represented
by the error term εij in spatial structure model 1b of Subsection 1.1.1. It describes a
portion of variation which is not autocorrelated, or is autocorrelated at a scale finer
than can be detected by the sampling design. The parameter for the nugget effect is C0
and the spatially structured component is represented by C1; the sill, C, is equal to
C0 + C1. The relative nugget effect is C0/(C0 + C1).

Figure 13.7 Spherical variogram model showing characteristic features: nugget effect (C0 = 2 in this
example), spatially structured component (C1 = 4), sill (C = C0 + C1 = 6), and range (a = 8).
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Although a sample variogram is a good descriptive summary of the spatial
contiguity of a variable, it does not provide all the semi-variance values needed for
kriging (Subsection 13.2.2). A model must be fitted to the sample variogram; the
model will provide values of semi-variance for all the intermediate distances. The
most commonly used models are the following (Fig. 13.8):

• Spherical model:  if d ≤ a;  if d > a.

• Exponential model: .

• Gaussian model: .

• Hole effect model: . An equivalent form is

 where a' = 1/a.  represents the value

of γ towards which the dampening sine function tends to stabilize. This equation would
adequately model a variogram of the periodic structures in Fig. 13.5a-b (variograms
only differ from Geary’s correlograms by the scale of the ordinate).

Figure 13.8 Commonly used variogram models.
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• Linear model:  where b is the slope of the variogram model. A
linear model with sill is obtained by adding the specification:  if d ≥ a.

• Pure nugget effect model:  if d > 0;  if d = 0. The second part
applies to a point estimate. In practice, observations have the size of the sampling grain
(Section 13.0); the error at that scale is always larger than 0.

Other less-frequently encountered models are described in geostatistics textbooks. A
model is usually chosen on the basis of the known or assumed process having
generated the spatial structure. Several models may be added up to fit any particular
sample variogram. Parameters are fitted by weighted least squares; the weights are
function of the distance and the number of pairs in each distance class (Cressie, 1991).

As mentioned at the beginning of Subsection 2, anisotropy is present in data when
the autocorrelation function is not the same for all geographic directions considered
(David, 1977; Isaaks & Srivastava, 1989). In geometric anisotropy, the variation to be
expected between two sites distant by d in one direction is equivalent to the variation
expected between two sites distant by b × d in another direction. The range of the
variogram changes with direction while the sill remains constant. In a river for
instance, the kind of variation expected in phytoplankton concentration between two
sites 5 m apart across the current may be the same as the variation expected between
two sites 50 m apart along the current even though the variation can be modelled by
spherical variograms with the same sill in the two directions. Constant b is called the
anisotropy ratio (b = 50/5 = 10 in the river example). This is equivalent to a change in
distance units along one of the axes. The anisotropy ratio may be represented by an
ellipse or a more complex figure on a map, its axes being proportional to the variation
expected in each direction. In zonal anisotropy, the sill of the variogram changes with
direction while the range remains constant. An extreme case is offered by a strip of
land. If the long axis of the strip is oriented in the direction of a major environmental
gradient, the variogram may correspond to a linear model (always increasing) or to a
spherical model with a sill larger than the nugget effect, whereas the variogram in the
direction perpendicular to it may show only random variation without spatial structure
with a sill equal to the nugget effect.

Directional variograms and correlograms may be used to determine whether
anisotropy (defined in Subsection 2) is present in the data; they may also be used to
describe anisotropic surfaces or to account for anisotropy in kriging
(Subsection 13.2.2). A direction of space is chosen (i.e. an angle θ, usually by
reference to the geographic north) and a search is launched for the pairs of points that
are within a given distance class d in that direction. There may be few such pairs
perfectly aligned in the aiming direction, or none at all, especially when the observed
sites are not regularly spaced on the map. More pairs can usually be found by looking
within a small neighbourhood around the aiming line (Fig. 13.9). The neighbourhood
is determined by an angular tolerance parameter ϕ and a parameter κ that sets the
tolerance for distance classes along the aiming line. For each observed point Øh in
turn, one looks for other points Øi that are at distance d ± κ from it. All points found

γ d( ) C0 bd+=
γ d( ) C=
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within the search window are paired with the reference point Øh and included in the
calculation of semi-variance or spatial autocorrelation coefficients for distance class d.
In most applications, the search is bi-directional, meaning that one also looks for
points within a search window located in the direction opposite (180°) the aiming
direction. Isaaks & Srivastava (1989, Chapter 7) propose a way to assemble directional
measures of semi-variance into a single table and to produce a contour map that
describes the anisotropy in the data, if any; Rossi et al. (1992) have used the same
approach for directional spatial correlograms.

Numerical example. An artificial data set was produced containing random autocorrelated
data. The data were generated using the turning bands method (David, 1977; Journel &
Huijbregts, 1978); random normal deviates were autocorrelated following a spherical model
with a range of 5. Pure spatial autocorrelation, as described in the spatial structure model 1b of
Subsection 1.1.1, generates continuity in the data (Fig. 13.10a). The variogram (without test of
significance) and spatial correlograms (with tests) are presented in Figs. 13.10b-d. In this
example, the data were standardized during data generation, prior to spatial autocorrelation
analysis, so that the denominator of eq. 13.2 is 1; therefore, the variogram and Geary’s
correlogram are identical. The variogram suggests a spherical model with a range of 6 units and
a small nugget effect (Fig. 13.10b).

Besides the description of spatial structures, variograms are used for several other
purposes in spatial analysis. In Subsection 13.2.2, they will be the basis for
interpolation by kriging. In addition, structure functions (variograms, spatial

Figure 13.9 Search parameters for pairs of points in directional variograms and correlograms. From an
observed study site Ø1, an aiming line is drawn in the direction determined by angle θ (usually
by reference to the geographic north, indicated by N ). The angular tolerance parameter ϕ
determines the search zone (grey) laterally whereas parameter κ sets the tolerance along the
aiming line for each distance class d. Points within the search window (in gray) are included in
the calculation of I (d), c (d) or γ(d).
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correlograms) may prove extremely useful to help determine the grain size of the
sampling units and the sampling interval to be used in a survey, based upon the
analysis of a pilot study. They may also be used to perform change-of-scale operations
and predict the type of autocorrelation and variance that would be observed if the grain
size of the sampling design was different from that actually used in a field study
(Bellehumeur et al., 1997).

4 — Spatial covariance, semi-variance, correlation, cross-correlation

This Subsection examines the relationships between spatial covariance, semi-variance
and correlation (including cross-correlation), under the assumption of second-order
stationarity, leading to the concept of cross-correlation. This assumption
(Subsection 13.2.1) may be restated as follows:

• The first moment (mean of points i) of the variable exists:

(13.11)

Its value does not depend on position in the study area.

Figure 13.10 (a) Series of 100 equispaced random, spatially autocorrelated data. (b) Variogram, with spherical
model superimposed (heavy line). Abscissa: distances between points along the geographic axis
in (a). (c) and (d) Spatial correlograms. Dark squares: autocorrelation statistics that remain
significant after progressive Bonferroni correction (α = 0.05); white squares: non-significant
values.
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• The second moment (covariance, numerator of eq. 13.1) of the variable exists:

(13.12)

    for h, i dhi ≈ d (13.13)

The value of C(d) depends only on d and on the orientation of the distance vector, but
not on position in the study area. To understand eq. 13.12 as a measure of covariance,
imagine the elements of the various pairs yh and yi written in two columns as if they
were two variables. The equation for the covariance (eq. 4.4) may be written as
follows, using a final division by n instead of (n – 1) (maximum-likelihood estimate of
the covariance, which is standard in geostatistics):

The overall variance (Var, with division by n instead of n – 1) also exists since it is
the covariance calculated for d = 0:

(13.14)

When computing the semi-variance, one only considers pairs of observations
distant by d. Eqs. 13.9 and 13.10 are re-written as follows:

    for h, i dhi  ≈ d (13.15)

A few lines of algebra obtain the following formula:

    for h, i dhi ≈ d (13.16)

Two properties are used in the derivation: (1) ∑yh = ∑yi , and (2) the variance (Var,
eq. 13.14) can be estimated using any subset of the observed values if the hypothesis
of second-order stationarity is verified.

The correlation is the covariance divided by the product of the standard deviations
(eq. 4.7). For a spatial process, the (auto)correlation is written as follows (leading to
eq. 13.1):

(13.17)
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W d( )--------------- yh yi

h i,( ) dhi d≈

W d( )

∑ mhmi–=

C d( ) E yh yi[ ] m2–=

sy hyi

yh yi∑
n

------------------
yh yi∑∑

n     n
--------------------------–

yhyi∑
n

------------------ mhmi–= =

Var yi[ ] E yi mi–[ ] 2
C 0( )= =

γ d( ) 1
2
---E yh yi–[ ] 2

=

γ d( )
yi

2∑ yhyi∑–

W d( )
------------------------------------- C 0( ) C d( )–= =

r d( ) C d( )
shs i

-------------- C d( )
Var yi[ ]
--------------------- C d( )

C 0( )
--------------= = =



Structure functions 735

Consider the formula for Geary’s c (eq. 13.2), which is the semi-variance divided by
the overall variance. The following derivation:

leads to the conclusion that Geary’s c is one minus the coefficient of spatial
(auto)correlation. In a graph, the semi-variance and Geary’s c coefficient have exactly
the same shape (e.g. Figs. 13.10b and d); only the ordinate scales may differ. An
autocorrelogram plotted using r (d) has the exact reverse shape as a Geary correlogram.
An important conclusion is that the plots of semi-variance, covariance, Geary’s c
coefficient, and r(d), are equivalent to characterize spatial structures under the
hypothesis of second-order stationarity (Bellehumeur & Legendre, 1998).

Cross-covariances may also be computed from eq. 13.12, using values of two
different variables observed at locations distant by d (Isaaks & Srivastava, 1989).
Eq. 13.17 leads to a formula for cross-correlation which may be used to plot cross-
correlograms; the construction of the correlation statistic is the same as for time series
(eq. 12.10). With transect data, the result is similar to that of eq. 12.10. However, the
programs designed to compute spatial cross-correlograms do not require the data to be
equispaced, contrary to programs for time-series analysis. The theory is presented by
Rossi et al. (1992), as well as applications to ecology.

Ecological application  13.1b

A survey was conducted on a homogeneous sandflat in the Manukau Harbour, New Zealand, to
identify the scales at which spatial heterogeneity could be detected in the distribution of adult
and juvenile bivalves (Macomona liliana and Austrovenus stutchburyi), as well as indications of
adult-juvenile interactions within and between species. The results were reported by Hewitt et
al. (1997); see also Ecological application 13.2. Sampling was conducted along transects
established at three sites located within a 1-km2 area; there were two transects at each site,
forming a cross. Sediment cores (10 cm diam., 13 cm deep) were collected using a nested
sampling design; the basic design was a series of cores 5 m apart, but additional cores were
taken 1 m from each of the 5-m-distant cores. This design provided several comparison in the
short distance classes (1, 4, 5, and 6 m). Using transects instead of rectangular areas allowed
relatively large distances (150 m) to be studied, given the allowable sampling effort. Nested
sampling designs have also been advocated by Fortin et al. (1989) and by Bellehumeur &
Legendre (1998).

Spatial correlograms were used to identify scales of variation in bivalve concentrations. The
Moran correlogram for juvenile Austrovenus, computed for the three transects perpendicular to
the direction of tidal flow, displayed significant spatial autocorrelation at distances of 1 and 5 m
(Fig. 13.11a). The same pattern was found in the transects parallel to tidal flow. Figure 13.11a
also indicates that the range of influence of autocorrelation was about 15 m. This was confirmed
by plotting bivalve concentrations along the transects: LOWESS smoothing of the graphs
(Subsection 10.3.8) showed patches of about 25-30 m in diameter (Hewitt et al., 1997, Figs. 3
and 4).

c d( ) γ d( )
Var yi[ ]---------------------

C 0( ) C d( )–
C 0( )---------------------------------- 1

C d( )
C 0( )--------------– 1 r d( )–= = = =
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Cross-correlograms were computed to detect signs of adult-juvenile interactions. In the
comparison of adult (> 10 mm) to juvenile Macomona (< 5 mm), a significant negative cross-
correlation was identified at 0 m in the direction parallel to tidal flow (Fig. 13.11b); correlation
was not significant for the other distance classes. As in time series analysis, the cross-correlation
function is not symmetrical; the correlation obtained by comparing values of y1 to values of y2
located at distance d on their right is not the same as when values of y2 are compared to values
of y1 located at distance d on their right, except for d = 0. In Fig. 13.11b, the cross-correlogram
is folded about the ordinate (compare to Fig. 12.9). Contrary to time series analysis, it is not
useful in spatial analysis to discuss the direction of lag of a variable with respect to the other
unless one has a specific hypothesis to test.

5 — Multivariate Mantel correlogram

Sokal (1986) and Oden & Sokal (1986) found an ingenious way to compute a
correlogram for multivariate data, using the normalized Mantel statistic rM and test of
significance (Subsection 10.5.1). This method is useful, in particular, to describe the
spatial structure of species assemblages.

The principle is to quantify the ecological relationships among sampling sites by
means of a matrix Y of multivariate similarities or distances (using, for instance,
coefficients S17 or D14 in the case of species abundance data), and compare Y to a
model matrix X (Subsection 10.5.1) which is different for each geographic distance
class (Fig. 13.12). 

• For distance class 1 for instance, pairs of neighbouring stations (that belong to the
first class of geographic distances) are coded 1, whereas the remainder of matrix X1
contains zeros. A first Mantel statistic (rM1) is calculated between Y and X1. 

• The process is repeated for the other distance classes d, building each time a model-
matrix Xd and recomputing the normalized Mantel statistic. Matrix Xd may contain 1’s

Figure 13.11 (a) Spatial autocorrelogram for juvenile Austrovenus densities. (b) Cross-correlogram for adult-
juvenile Macomona interactions, folded about the ordinate: circles = positive lags, squares =
negative lags. Dark symbols: correlation statistics that are significant after progressive
Bonferroni correction (α = 0.05). Redrawn from Hewitt et al. (1997).

Distance classes (m)

–0.45

–0.35

–0.25

–0.15

–0.05

0.05

0.15

0.25

0.35

0 20 40 60 80 100

(a) Austrovenus < 2.5 mm

M
or

an
's

 

I

–0.3

–0.4

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

C
ro

ss
-c

or
re

la
ti

on

0 10 20 30 40 50 60 70 80

(b) Macomona >10 mm × Macomona < 5 mm

Distance classes (m)



Structure functions 737

for pairs that are in the given distance class, or the code value for that distance class
(d), or any other value different from zero; all coding methods lead to the same value
of the normalized Mantel statistic rM.

The Mantel statistics, plotted against distance classes, produce a multivariate
correlogram. Each value is tested for significance in the usual way, using either

Figure 13.12 Construction of a Mantel correlogram for a similarity matrix S (n = 10 sites). The matrix of
geographic distance classes D, from Fig. 13.4, gives rise to model matrices X1, X2, etc. for the
various distance classes d. These are compared, in turn, to matrix Y = S using standardized
Mantel statistics (rMd). Dark symbols in the correlogram: Mantel statistics that are significant
after progressive Bonferroni correction (α = 0.05).

1.00 0.56 0.35 0.55 0.71 0.76 0.39 0.40 0.29 0.75

0.56 1.00 0.71 0.48 0.75 0.37 0.55 0.79 0.38 0.54

0.35 0.71 1.00 0.47 0.63 0.15 0.38 0.65 0.34 0.44
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permutations or Mantel’s normal approximation (Box 10.2). Computation of
standardized Mantel statistics assumes second-order stationarity. As in the case of
univariate correlograms (above), one is advised to use some form of correction for
multiple testing before interpreting Mantel correlograms.

Numerical example. Consider again the 10 sampling sites of Fig. 13.4. Assume that species
assemblage data were available and produced similarity matrix S of Fig. 13.12. Matrix S played
here the role of Y in the computation of Mantel statistics. Were the species data autocorrelated?
Distance matrix D, already divided into 6 classes in Fig. 13.4, was recoded into a series of model
matrices Xd (d = 1, 2, etc.). In each of these, the pairs of sites that were in the given distance
class received the value d, whereas all other pairs received the value 0. Mantel statistics were
computed between S and each of the Xd matrices in turn; positive and significant Mantel
statistics indicate positive autocorrelation in the present case. The statistics were tested for
significance using 999 permutations and plotted against distance classes d to form the Mantel
correlogram. The progressive Bonferroni method was used to account for multiple testing
because interest was primarily in detecting autocorrelation in the first distance classes.

Before computing the Mantel correlogram, one must assume that the condition of second-
order stationarity is satisfied. This condition is more difficult to explain in the case of
multivariate data; it means essentially that the surface is uniform in (multivariate) mean and
variance at broad scale. The correlogram illustrated in Fig. 13.12 suggests the presence of a
gradient. If the condition of second-order-stationarity is satisfied, this means that the gradient
detected by this analysis is a part of a larger, autocorrelated spatial structure. This was called a
“false gradient” in the numerical example of Subsection 2, above.

When Y is a similarity matrix and distance classes are coded as described above,
positive Mantel statistics correspond to positive autocorrelation; this is the case in the
numerical example. When the values in Y are distances instead of similarities, or if the
1's and 0's are interchanged in matrix X, the signs of all Mantel statistics are changed.
One should always specify whether positive autocorrelation is expressed by positive or
negative values of the Mantel statistics when presenting Mantel correlograms. The
method was applied to vegetation data by Legendre & Fortin (1989).

13.2 Maps

The most basic step in spatial pattern analysis is the production of maps displaying the
spatial distributions of values of the variable(s) of interest. Furthermore, maps are
essential to help interpret spatial structure functions (Section 13.1). 

Several methods are available in mapping programs. The final product of modern
computer programs may be a contour map, a mesh map (such as Figs. 13.13b and
13.16b), a raised contour map, a shaded relief map, and so on. The present Section is
not concerned with the graphic representation of maps but instead with the way the
mapped values are obtained. Spatial interpolation methods have been reviewed by
Lam (1983).


