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4.7. Canonical ordination
4.7.1 Introduction

The ordination methods reviewed above are meant to represent the
variation of a data matrix in a reduced number of dimensions.
Interpretation of the structures is done a posteriori, hence the
expression indirect (gradient) analysis used for this approach. For
instance, one can interpret the CA ordination axes (one at a time), by
regressing the object scores on one or several environmental variables.
The ordination procedure itself has not been influenced by these
external variables, which become involved only after the computation.
One lets the data matrix express itself without constraint. This is an
exploratory, descriptive approach.

Constrained ordination [redundancy analysis (RDA) and canonical
correspondence analysis (CCA)], on the contrary, explicitly puts into
relationship two matrices: one response matrix and one explanatory
matrix. Both are involved at the stage of the ordination. This approach
integrates the techniques of ordination and multiple regression
(Table VIII):

Table VIII - Relationship between ordination and regression

Response variables Explanatory variables Analysis

1 variable 1 variable Simple regression
1 variable m variables Multiple regression
p variables - Simple ordination
p variables m variables Canonical ordination

In RDA and CCA, the ordination process is directly influenced by a set
of explanatory variables: the ordination computes axes that are a
linear combination of explanatory variables. In other words, these
methods seek the combinations of explanatory variables that best
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explain the variation of the response matrix. It is therefore a
constrained ordination process. The difference with an
unconstrained ordination is important: the matrix of explanatory
variables conditions the "weight" (eigenvalues), the orthogonality and
the direction of the ordination axes. Here one can say that the axes
explain (in the statistical sense) the variation of the dependent matrix.

A constrained ordination produces as many canonical axes as there
are explanatory variables, but each of these axes is a linear
combination (a multiple regression model) of all explanatory variables.
Examination of the canonical coefficients (i.e., the regression
coefficients of the models) of the explanatory variables on each axis
allows to know which variable(s) is or are most important to explain
the first, second... axis.

The variation of the data matrix that cannot be explained by the
environmental variables is expressed on a series of unconstrained axes
following the canonical ones.

Due to the fact that in many cases the explanatory variables are not
dimensionally homogeneous, usually canonical ordinations are done
with standardized explanatory variables. In RDA, this does not
affect the choice between running the analysis on a covariance or a
correlation matrix, however, since this latter choice relates to the
response (y) variables.

4.7.2 Renduncandy analysis (RDA)

Depending on the algorithm used, the search for the optimal linear
combinations of explanatory variables that represent the orthogonal
canonical axes is done sequentially (axis by axis, using an iterative
algorithm) or in one step (direct algorithm). Figure 26, which is Figure
11.2 of Legendre & Legendre (1998, p. 581), summarises the steps of
a redundancy analysis (RDA) using the direct algorithm:
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- regress the p response variables, each one separately, on the
explanatory variables; compute the fitted and residual values of the
regressions;

- run a PCA of the matrix of fitted values of these regressions;

- use the matrix of canonical eigenvectors to compute two sorts of site
ordinations:

- an ordination in the space of the explanatory variables; this yields
the fitted site scores, called "Site constraints (linear combinations
of constraining variables)" in the vegan library of R; these
canonical axes are orthogonal to one another;

- an ordination in the space of the response variables (species space);
this yields the "sample scores" of Canoco; in vegan, these site
scores are called "Site scores (weighted sums of species scores)".
These ordination axes are not orthogonal;

- use the matrix of residuals from the multiple regressions to compute
an unconstrained ordination (PCA in the case of an RDA).

Redundancy analysis (RDA) is the canonical counterpart of principal
component analysis (PCA). Canonical correspondence analysis (CCA)
is the canonical counterpart of correspondence analysis (CA).

Due to various technical constraints, the maximum numbers of
canonical and non-canonical axes differ (Table IX):

Table IX - Maximum number of non-zero eigenvalues and corresponding eigenvectors that
may be obtained from canonical analysis of a matrix of response variables Y(n×p) and a
matrix of explanatory variables X(n×m) using redundancy analysis (RDA) or canonical
correspondence analysis (CCA). This is Table 11.1 from Legendre & Legendre (1998,
p.588).

Canonical eigenvalues Non-canonical eigenvalues

and eigenvectors and eigenvectors

RDA min[p, m, n–1] min[p, n–1]

CCA min[p–1, m, n–1] min[p–1, n–1]



Université Laval Analyse multivariable - mars-avril 2008 4

Dr. Daniel Borcard Université de Montréal

Regress each variable y on table X and
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Figure 26 - (preceding page) The steps of redundancy analysis using a direct algorithm.

This is Figure 11.2 of Legendre & Legendre (1998).

Graphically, the results of RDA and CCA are presented in the form of
biplots or triplots, i.e. scattergrams showing the objects, response
variables (often species) and explanatory variables on the same
diagram. The explanatory variables can be qualitative (the multiclass
ones are declared as "factor" in vegan but must be coded as a series of
dummy binary variables in Canoco) or quantitative. A qualitative
explanatory variable is represented on the bi- or triplot as the centroid
of the sites that have the description "1" for that variable ("Centroids
for factor constraints" in vegan, "Centroids of environmental
variables" in Canoco), and the quantitative ones are represented as
vectors (the vector apices are given under the name "Biplot scores for
constraining variables" in vegan and "Biplot scores of environmental
variables" in Canoco). The analytical choices are the same as for PCA
and CA with respect to the analysis on a covariance or correlation
matrix (RDA) and the scaling types (RDA and CCA).

Interpretation of an RDA biplot:

• RDA Scaling 1 = Distance biplot:  the eigenvectors are scaled to
unit length; the main properties of the biplot are the following:

(1) Distances among objects in the biplot are approximations of their
Euclidean distances in multidimensional space.

(2) Projecting an object at right angle on a response variable or a
quantitative explanatory variable approximates the position of
the object along that variable.

(3) The angles among response vectors are meaningless.

(4) The angles between response and explanatory variables in the
biplot reflect their correlations.
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(5) The relationship between the centroid of a qualitative explanatory
variable and a response variable (species) is found by projecting
the centroid at right angle on the variable (as for individual
objects).

(6) Distances among centroids, and between centroids and individual
objects, approximate Euclidean distances.

• RDA Scaling 2 = correlation biplot: the eigenvectors are scaled to
the square root of their eigenvalue. The main properties of the biplot
are the following:

(1) Distances among objects in the biplot are not approximations of
their Euclidean distances in multidimensional space.

(2) Projecting an object at right angle on a response or an
explanatory variable approximates the value of the object along
that variable.

(3) The angles in the biplot between response and explanatory
variables, and between response variables themselves or
explanatory variables themselves, reflect their correlations.

(4) The angles between descriptors in the biplot reflect their
correlations.

(5) The relationship between the centroid of a qualitative explanatory
variable and a response variable (species) is found by projecting
the centroid at right angle on the variable (as for individual
objects).

(6) Distances among centroids, and between centroids and individual
objects, do not approximate Euclidean distances.
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4.7.3 Canonical correspondence analysis (CCA)

In CCA, one uses the same types of scalings as in CA. Objects,
response variables and centroids of binary variables are plotted as
points on the triplot, while quantitative explanatory variables are
plotted as vectors. For the species and objects, the interpretation is the
same as in CA. Interpretation of the explanatory variables:

• CCA Scaling type 1 (focus on sites):

(1) The position of object on a quantitative explanatory variable can
be obtained by projecting the objects at right angle on the
variable.

(2) An object found near the point representing the centroid of a
qualitative explanatory variable is more likely to possess the state
"1" for that variable.

• CCA Scaling type 2 (focus on species):

(1) The optimum of a species along a quantitative environmental
variable can be obtained by projecting the species at right angle
on the variable.

(2) A species found near the centroid of a qualitative environmental
variable is likely to be found frequently (or in larger abundances)
in the sites possessing the state "1" for that variable.

Figure 27 provides a fictitious example of a CCA triplot involving 6
objects, 3 species, 2 quantitative explanatory variables and one
categorical explanatory variable with 3 states. Figure 28 is a real
example of RDA biplot showing the two first axes of a canonical
ordination of 143 sites, 63 Hellinger-transformed bird species
abundances, 15 quantitative environmental variables and 9 classes of
qualitative variables. This figure is here merely to show that a biplot
can become rather crowded when the data set is large. In this case, the
143 sites were not represented on the scatterplot.
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Figure 27: CCA triplot showing the objects (black dots), the response variables (species,

white squares), the quantitative explanatory variables (arrows) and the states of the

qualitative explanatory variable (stars). Type 2 scaling: explanations in the text.
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Figure 28 - Real example of RDA biplot (RDA on a covariance matrix, scaling 2) showing
the two first axes of a canonical ordination of 143 sites (not represented), 63 bird species
(headless or full-headed arrows), 15 quantitative environmental variables (indented arrows)
and 9 classes of qualitative variables (circles, squares and triangles).

4.7.4.1 Partial canonical ordination

In the same way as one can compute a partial regression, it is possible
to run partial canonical ordinations. It is thus possible to run, for
instance, an RDA of a (transformed) species data matrix (Y matrix),
explained by a matrix of climatic variables (X), in the presence of
edaphic variables (W). For instance, such an analysis would allow the
user to display the patterns of species data uniquely attributed to
climate when the effect of the soil factors are hold constant. The
converse is possible also.
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4.7.4.2 Variation partitioning

Borcard et al. (1992)1 devised a procedure called variation partitioning
in a context of multivariate ecological and spatial analysis. This method
is based on (at least) two explanatory data sets. One explanatory
matrix, X, contains the environmental variables, and the other (W)
contains the x-y geographical coordinates of the sites, augmented (in
the original paper) by the terms of a third-order polynomial function:

b0 + b1x + b2y + b3x2 + b4xy + b5y2 + b6x3 + b7x2y + b8xy2 + b9y3

The procedure aims at partitioning the variation of a Y matrix of
species data into following fractions (Figure 29):

[a] variation explainable only by matrix X

[b] variation explainable both by matrix X and matrix W

[c] variation explainable only by matrix W

[d] unexplained variation.

Total variation of Y matrix

[a] [b] [c]

Matrix X
Matrix W

[d]

Figure 29 - The fractions of variation obtained by partitioning a response data set Y with

two explanatory data matrices X and W.

                                                
1 Borcard, D., P. Legendre. & P. Drapeau. 1992. Partialling out the spatial component of ecological

variation.  Ecology 73(3): 1045-1055.
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Estimation of the R2 of the various components are obtained by first
computing the three following canonical ordinations:

• Response data | Environment + Space : [a] + [b] + [c]

• Response data | Environment : [a] + [b]

• Response data | Space : [b] + [c]

Beware: the R2 values obtained above are unadjusted, i.e. they do not
take into account the numbers of explanatory variables used in
matrices X and W. In canonical ordination as in regression analysis, R2

always increases when an explanatory variable xi is added to the
model, regardless of the real meaning of this variable. In the case of
regression, to obtain a better estimate of the population coefficient of
determination (ρ2), Zar (1999, p. 423)2, among others, propose to use
an adjusted coefficient of determination:

Radj
2 = 1−

(n −1)
(n − m −1)

(1− R2 )

As Peres-Neto et al.3 have shown using extensive simulations, this
formula can be applied to the fractions obtained above in the case of
RDA (but not CCA), yielding adjusted fractions: ([a]+[b])adj,
([b]+[c])adj and ([a]+[b]+[c])adj. These adjusted fractions can then be
used to obtain the individual adjusted fractions:

4. Fraction [a]adj is obtained by subtracting ([b]+[c])adj from
([a]+[b]+[c])adj.

5. Fraction [b]adj is obtained by subtracting [a]adj from ([a]+[b])adj.

6. Fraction [c]adj is obtained by subtracting ([a]+[b])adj from
([a]+[b]+[c])adj.

                                                
2 Zar, J. H. 1999. Biostatistical analysis. Fourth Edition, Prentice Hall, Upper Saddle River, NJ.
3 Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard. 2006. Variation partitioning of species data matrices: estimation and
comparison of fractions. Ecology 87: 2614-2625.
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7. Fraction [d]adj is obtained by subtracting ([a]+[b]+[c])adj from 1 (i.e.
the total variation of Y).

We strongly advocate the use of the adjusted coefficient of
determination, together with RDA, for the partitioning of variation
of ecological data matrices.

This partitioning allows one to compute and test partial as well as
semipartial correlation coefficients. Note that these are computed on
unadjusted fractions of variation.

The partial correlation of Y and X, controlling for W, is computed as

rYX.W =
a[ ]

a + d[ ]
  with F =

a[ ] m

d[ ] n − m − q −1( )
The semipartial correlation of Y and X, in the presence of W, is
computed as

rY (X .W ) =
a[ ]

a + b + c + d[ ]
 with F =

a[ ] m

d[ ] n − m − q −1( )
The coefficients of partial and semipartial determination are the
squares of the correlation coefficients above.

These quantities are useful for testing purposes. Unbiased estimates
of semipartial coefficients of determination, however, are computed as
shown higher (adjusted R2).

If run with RDA, the partitioning is done under a linear model, the
total SS of the Y matrix is partitioned, and it corresponds strictly to
what is obtained by multiple regression if the Y matrix contains only
one response variable. If run under CCA, the partitioning is done on
the total inertia of the Y matrix (and runs into trouble when it comes
to estimate unbiased values of the various fractions).
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More recently, Borcard & Legendre (2002)4, Borcard et al. (2004)5

and Legendre & Borcard (2006)6 have proposed to replace the spatial
polynom by a much more powerful representation of space. The
method is called PCNM analysis. The acronym stands for Principal
Coordinates of Neighbour Matrices. This technique will be addressed
in Chapter 6.

It must be emphasised here that fraction [b] has nothing to do with
the interaction of an ANOVA! In ANOVA, an interaction is present
when the effects of one factor vary with the levels of another factor.
An interaction can have a non-zero value and is easiest to detect and
test when the two factors are orthogonal... which is the situation
where fraction [b] is equal to zero! Fraction [b] arises because there
is some correlation between matrices X and W. It is not a testable
fraction and has no degrees of freedom of its own.

Note that in some cases fraction [b] can even take negative values.
This happens, for instance, if matrices X and W have strong opposite
effects on matrix Y while being positively correlated to one another.

When the [b] fraction is important with respect to the unique ([a]
and [c]) fractions, there is some uncertainty about the real
contribution of each explanatory matrix. This is so because fraction
[b] actually measures the degree of multicollinearity in the model. The
more multicollinearity in a model the more unstable the regression
coefficients are.

The variation partitioning procedure can be extended to more than two
explanatory matrices, and can be applied outside of the spatial context.
Function varpart of vegan allows the computation of partitionings
involving up to 4 explanatory matrices.

                                                
4 Borcard, D. & P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal

coordinates of neighbour matrices. Ecological Modelling 153: 51-68.
5 Borcard, D., P. Legendre, Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structures of

ecologial data at all scales. Ecology 85(7): 1826-1832.
6 Legendre, P. & D. Borcard. 2006. Quelles sont les échelles spatiales importantes dans un écosystème? In:

J.-J. Droesbeke, M. Lejeune et G. Saporta (éds), Analyse statistique de données spatiales.
Editions TECNIP, Paris.
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4.7.5 Partial canonical ordination - Forward selection of
environmental variables

There are situations where one wants to reduce the number of
explanatory variables in a regression or canonical ordination model.
Canoco and some functions in the R language allow this with a
procedure of forward selection of explanatory variables. This is
how it works:

1. Compute the independent contribution of all m explanatory variables
in turn to the explanation of the variation of the response data
table. This is done by running m separate canonical analyses.

2. Test the significance of the contribution of the best variable.

3. If it is significant, include it into the model as a first explanatory
variable.

4. Compute (one at a time) the partial contributions (conditional
effects) of the m–1 remaining explanatory variables, holding
constant the effect of the one already in the model.

5. Test the significance of the best partial contribution among the m–1
variables.

6. If it is significant, include this variable into the model.

7. Compute the partial contributions of the m–2 remaining  explanatory
variables, holding constant the effect of the two already in the
model.

8. The procedure goes on until no more significant partial contribution
is found.

Stéphane Dray has written an R package (packfor) that allows to run
RDA-based forward selection (function forward.sel). In Canoco
4.5, forward selection can be run either manually (at each step, the
user asks for the test and decides whether to include a variable or not)
or automatically. In the latter case, however, the program tests all the
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variables and includes them all into the model, significant or not. The
user has then to ask for the forward selection summary (FS summary
button), examine the conditional effects and their probability, and rerun
the analysis, retaining only the k first variables whose conditional
effects are significant at a preestablished probability level.

Remarks

a) First of all, forward selection is too liberal (i.e., it allows to many
explanatory variables to enter a model)

Before running a forward selection, always perform a global test
(including all explanatory variables). If, and only if, the global test
is significant, run the forward selection.

Even if the global test is significant, forward selection is too liberal.
Simulations have shown that, in addition to the usual alpha level,
one must add a second stopping criterion to forward selection:
the model under construction must not have an R

2
adj higher than

that of the global model (i.e., the model containing all explanatory
variables)7. This second stopping criterion is available in the latest
versions of the packfor package.

b) The tests are run by random permutations.

c) Like all procedures of selection (forward, backward or stepwise),
this one does not guarantee that the best model is found. From the
second step on, the inclusion of variables is conditioned by the
nature of the variables that are already in the model.

d) As in all regression models, the presence of strongly intercorrelated
explanatory variables renders the regression/canonical coefficients
unstable. Forward selection does not necessarily eliminate this
problem since even strongly correlated variables may be admitted
into a model.

                                                
7 Blanchet, F.G., P. Legendre & D. Borcard (accepted 08/01/24): Forward selection of explanatory
variables. Ecology.
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e) Forward selection can help when several candidate explanatory
variables are strongly correlated, but the choice has no a priori
ecological validity. In this case it is often advisable to eliminate one
of the intercorrelated variables on an ecological basis rather than
on a statistical basis.

f) If one wants to select an even larger subset of variables (and hence
be even more liberal), another choice is backwards elimination,
where one starts with all the variables included, and remove one
by one the variables whose partial contributions are not significant.

g) In cases where several correlated explanatory variables are present,
without clear a priori reasons to eliminate one or the other, one can
examine the variance inflation factors (VIF), available as an R
function written by Sébastien Durand, and provided in Canoco.

The variance inflation factors (VIF) measure how much the
variance of the canonical coefficients is inflated by the presence of
correlations among explanatory variables. This measures in fact the
instability of the regression model. As a rule of thumb, ter Braak
recommends that variables that have a VIF larger than 20 be
removed from the analysis. Beware: always remove the variables
one at a time and recompute the analysis, since the VIF of every
variable depends on all the others!

4.7.6 Distance-based redundancy analysis (db-RDA)

For cases where the user does not want to base the comparisons
among objects on the distances that are preserved in CCA or RDA
(including the species pre-transformations), another approach is
possible for canonical ordination: db-RDA (Legendre & Anderson
1999)8. Described in the framework of multivariate ANOVA testing,
the steps of a db-RDA are as follows:
                                                
8 Legendre, P. & M. J. Anderson. 1999. Distance-based redundancy analysis: testing multi-species

responses in multi-factorial ecological experiments. Ecological Monographs 69 (1): 1-24.
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1. Compute a distance matrix from the raw data using the most
appropriate association coefficient.

2. Compute a PCoA of the matrix obtained in 1. If necessary, correct
for negative eigenvalues (Lingoes or Caillez correction), because the
aim here is to retain all the data variation.

3. Compute an RDA, using the objects × principal coordinates as
dependent (Y) matrix and the matrix of explanatory variables as X
matrix.

Figure 30 summarises the method:

Raw data
(replicates x species)

Distance matrix
(Bray-Curtis, etc.)

Principal coordinate analysis
(PCoA)

Correction for
negative eigenvalues

(replicates x
principal coordinates)

Matrix Y Matrix X

(dummy
variables
for the
factor)

Test of one factor
in single-factor model

Redundancy analysis (RDA)
F*  statistic

Test of F*
by permutation

Figure 30 - The steps of a db-RDA. Adapted from Legendre & Anderson (1999).
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Note that nowadays, thanks to the transformations proposed by
Legendre & Gallagher (2001) for the species data matrices and
allowing the direct application of RDA to species data, db-RDA is less
used in this case.

4.7.7 Orthogonal factors: coding an ANOVA for RDA

As mentioned above, RDA is a linear method. It is the direct extension
of multiple regression to multivariate response variables. On the other
hand, ANOVA can be computed using a multiple regression approach
if the factors and interactions are coded in an appropriate manner.
Therefore, using the same coding, it is possible to run multivariate
ANOVA using RDA, with great advantages over traditional
MANOVA: there is no limitation about the number of response
variables with respect to the number of objects; the ANOVA can be
tested using permutations, which alleviates the problems of distribution
of data (see  further down); the results can be shown and interpreted
with help of biplots. Furthermore, using the pre-transformations of
species data, one can now compute MANOVA on species data. This is
of great interest to ecologists, who use experimental approaches more
and more.

The two following pages show how to code two orthogonal factors,
without interaction first (when these is only one experimental or
observational unit for each combination of the two factors) and with
interactions (in the case of more than 1, here 2 objects per
combination). This coding (called orthogonal contrasts or Helmert
coding) works for balanced experimental designs.



Université Laval Analyse multivariable - mars-avril 2008 19

Dr. Daniel Borcard Université de Montréal



Université Laval Analyse multivariable - mars-avril 2008 20

Dr. Daniel Borcard Université de Montréal


