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5. Statistical tests for multivariate data

Ecological data are difficult to handle when it comes to statistical
testing. All the methods above, used as they are presented, are
descriptive or explanatory, but as yet no statistical test has been
presented to assess the significance of the relationships or structures.
Here we shall present two tests, both in the general framework of
permutation testing: the test on canonical axes of a canonical
ordination and the Mantel test on distance matrices.

5.1 Parametric tests

Classical, parametric testing has many constraints and generally
supposes that several conditions are fulfilled for the test to be valid.
One fundamental assumption is that the observations must be
independent from one another (i.e. the probability of obtaining a given
value of the response variable in one observation is independent of the
values found in other observations). Autocorrelated data violate this
principle, their error terms being correlated across observations. This
topic is especially important in the context of spatial analysis. Another
frequent requirement of classical testing is the conformity of the
distribution of the data to some well-known theoretical distribution,
most often the normal distribution.

When the conditions of a given test are fulfilled, an auxiliary variable
(for instance an F or t-statistic), constructed on the basis of one or
several parameters estimated from the data, has a known behaviour
under the null hypothesis. It is thus possible to ascertain whether the
observed value of that statistic is likely or not to occur if H0 is true. If
the observed value is as extreme or more extreme than the value of
the reference statistic for a pre-established probability level (usually α
= 0.05), then H0 is rejected. If not, H0 is not rejected (Figure 31).



Université Laval Analyse multivariable - mars-avril 2008 2

Dr. Daniel Borcard Université de Montréal

Figure 31 - Decision in statistical testing. S is some test statistic (e.g. Student's t statistic).

Adapted from course notes by Pierre Legendre.
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5.2 Permutation tests

The parametric procedure is rarely usable with ecological data, mainly
because these data rarely fulfil the assumptions related to distribution.
Furthermore, even data transformations often do not manage to
normalize the data. In these conditions, another, very elegant but
computationally more intensive approach is available: testing by
random permutations.

Principle of permutation testing: if no theoretical reference distribution
is available, then generate a reference distribution under H0 from the
data themselves. This is achieved by permuting the data randomly in a
scheme that ensures H0 to be true, and recomputing the test statistic.
Repeat the procedure a large number of times. The observed test
statistic is then compared to the set of test statistics obtained by
permutations. If the observed value is as extreme or more extreme
than, say, the 5% most extreme values obtained under permutations,
then it is considered too extreme for H0 to be true. H0 is rejected.

An example can be construed based on the Pearson correlation
coefficient between two quantitative variables (Table X):

Table X - Example of data for permutation test: Pearson's r

Var.1 Var.2 Perm.1 Perm.2 Perm.3 ......
1 4 4 10 11
3 5 5 8 8
2 3 8 4 14
4 6 10 6 5
3 8 11 3 3
6 7 9 7 10
7 9 3 5 6
5 10 14 14 9
8 11 7 9 7
9 14 6 11 4
Pearson r 0.890 r* -0.081 0.288 -0.474 ......
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In Table X, the two leftmost columns represent the original,
unpermuted data. 0.890 is the value of Pearson's r correlation
coefficient between the two variables. Perm.1, Perm.2 and so on are
permutations of Var.2. The r* are the values of r between Var.1 and
the permuted Perm.* columns. Since these columns have had their
values permuted randomly, there is no expected relationship between
Var.1 and Perm.1, Perm.*, and so on. These are thus realisations of
H0, the null hypothesis of the test: there is no linear relationship
between the two variables.

In permutation testing, the observed (true) value must a priori be
considered as belonging to the reference distribution. Therefore, it is
customary to ask for 99, 999 or 9999 random permutations. It is then
easy to verify the ranking of the observed value with respect to the
permuted ones, and to transform this into a probability value (Figure
32):

A B

Figure 32 - Examples of comparison of true test values with reference distributions

generated by random permutations. In A, the true value (arrow) is quite extreme: 5% or

less random values are larger than the true one. H0 would be rejected at the 5% one-tailed

probability level. B: the true value is amidst the random ones. H0 is not rejected. Adapted

from course notes by Pierre Legendre.



Université Laval Analyse multivariable - mars-avril 2008 5

Dr. Daniel Borcard Université de Montréal

If the test is two-tailed, H0 is rejected at the 0.05 probability level
when

Pcomp =
per < -obs[ ]+ per = -obs[ ] + per = obs[ ]+ per > obs[ ]

Nb. permutations +  1
 ≤ 0,05

If the test is one-tailed (right), H0 is rejected at the 0.05 probability
level when

Pcomp =
per = obs[ ]+ per > obs[ ]
Nb. permutations +  1

 ≤ 0,05

Table XI gives some examples of numerical summaries of permutation
tests, with the probability of H0 derived from the results, for two- and
one-tailed tests.

Table XI - Examples based on Pearson's r:

Two-tailed tests:

[per<-|obs|][per=-|obs|] [-|obs|<per<|obs|] [per=|obs|][per>|obs|] P(H0)

6 1 969 1 23 0.031

21 20 926 1 32 0.074

0 0 999 1 0 0.001

0 0 990 1 9 0.010

0 0 99 1 0 0.01

0 1 98 1 0 0.02
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One-tailed test, right tail:

[per<-|obs|][per=-|obs|] [-|obs|<per<|obs|] [per=|obs|][per>|obs|] P(H0)

6 1 969 1 23 0.024

21 20 926 1 32 0.033

0 0 999 1 0 0.001

0 1 98 1 0 0.01

One-tailed test, left tail:

[per<-|obs|][per=-|obs|] [-|obs|<per<|obs|] [per=|obs|][per>|obs|] P(H0)

6 1 969 1 23 0.007

21 20 926 1 32 0.041

0 1 999 0 0 0.001

0 1 98 1 0 0.01

Words of caution about permutation tests

Elegant as it may seem, the method of permutations does not solve all
the problems related to statistical testing.

1. Beyond simple cases like the one above, other problems may
require different and more complicated permutation schemes than the
simple random scheme applied here. It is, in particular, the case with
the tests of the main factors of an ANOVA coded as proposed in
Section 4.7.7, where the permutations for factor A must be limited
within the levels of factor B, and vice versa.

2. Permutation tests do solve several, but not all, distributional
problems. In particular, they do not solve distributional problems
linked to the hypothesis being tested. For instance, permutational
ANOVA does not require normality, but it still does require
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homogeneity of variances, because this relates to the Behrens-Fisher
problem linked to comparisons of means: actually two hypotheses are
tested simultaneously in ANOVA, i.e. equality of the means and
equality of the variances. This is true also for the two-sample t-test of
comparison of means.

3. Contrary to popular belief, permutation tests do not solve the
problem of independence of observations. This problem has still to
be addressed by special solutions, differing from case to case, and
often related to the correction of degrees of freedom.

4. Although many statistics can be tested directly by permutations (e.g.
Pearson's r above), it is generally advised to use a pivotal statistic
whenever possible (for Pearson's r it would be a Student's t statistic).
A pivotal statistic has a distribution under the null hypothesis which
remains the same for any value of the measured effect.

5. Observe that it is not the statistic itself which determines if a
test is parametric or not: it is the reference to a theoretical
distribution (which requires assumptions about the parameters of the
statistical population from which the data have been extracted) or to
permutations.

5.3 Tests of an RDA or CCA

5.3.1 Principle

Remember that the eigenvalue of a canonical axis represents the
amount of variation of the response data explained by the axis. If one
wants to test one single axis at a time the idea of the test is to verify
whether an equal or larger eigenvalue can be obtained under the null
hypothesis of no relationship between the response matrix and the
explanatory matrix. But normally one first tests the significance of the
analysis globally. The basis is then the sum of all canonical
eigenvalues. The hypotheses are thus:
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- H0: there is no linear relationship between the response matrix and
the explanatory matrix;

- H1: there is a linear relationship between the response matrix and the
explanatory matrix.

Originally, the test statistic was the eigenvalue or sum of canonical
eigenvalues itself. Now, one uses a pivotal statistic instead, which is a
"pseudo-F" statistic which is defined as

F =
sum of all canonical eigenvalues / m

RSS/(n − m −1)

where n is the number of objects, m is the number of explanatory
variables and RSS is the residual sum of squares, i.e. the sum of non-
canonical eigenvalues (after fitting the explanatory variables).

Partial canonical analyses and their axes can also be tested for
significance. The F statistic then takes into account the covariables, i.e.
the q variables of the W matrix that are held constant in the analysis:

F =
sum of all canonical eigenvalues / m

RSS/(n − m − q −1)

where the "sum of all canonical eigenvalues" is, this time, the value
obtained when holding W constant. It is the (unadjusted) fraction [a]
of the partitioning of variation.

5.3.2 Permutation procedures

The permutation procedures for these tests are not trivial (see
Legendre & Legendre 1998, p. 607sq. for details). The main
permutation types are the following:

a) Without covariables in the analysis

- permutation of raw data; the null hypothesis is that of
exchangeability of the rows of Y with respect to the
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observations in X. This is implemented by permuting the rows
of Y (or, alternatively, the rows of X) at random and
recomputing the redundancy analysis;

- permutation of residuals; here the residuals of a linear (or other)
model are the permutable units. In canonical analysis, the null
hypothesis is that of exchangeability of the residuals of the
response variables after fitting the explanatory variables. Tests
of significance using permutation of residuals have only
asymptotically exact significance levels (i.e. as n becomes
large).

b) With covariables in the analysis: two methods of permutation of
residuals are used to test the significance of the sum of all canonical
eigenvalues:

- permutation of residuals under a reduced (or null) model: the
permutable units are the residuals of variables Y on W;

- permutation of residuals under a full model: the permutable units
are the residuals of variables Y on X and W together.

Using Monte Carlo simulations, Anderson & Legendre (1999)1

compared empirical type I error and power of various permutation
techniques for a test of significance of a single partial regression
coefficient. Their results are relevant to RDA because this method,
using a single y variable, is equivalent to partial regression. Their main
conclusions were:

- when the error in the data strongly departed from normality,
permutation tests had more power than parametric t-tests;

- type I error and power were asymptotically equivalent for
permutation of raw data or permutation of residuals under the
full or reduced model;

                                                
1 Anderson, M. J. & P. Legendre. 1999. An empirical comparison of permutation methods for tests of

partial regression coefficients in a linear model. J. Statis.Comput.Simulation 62: 271-303.
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- when the covariable contained an extreme outlier, permutation
of raw data resulted in unstable (often inflated) type I error.
This was not the case with permutation of residuals. Thus,
permutation of residuals are especially recommended when the
matrix W of covariables contains outliers.

5.4 Mantel test: matrix correlation

Described in 1967 by the epidemiologist Nathan Mantel2, the test of
matrix correlation that bears his name has been increasingly used by
ecologists in the eighties. Presently, however, with the advent of the
powerful canonical ordination techniques, the use of the Mantel test
must be restricted to cases where the hypotheses and data
themselves are naturally stated in terms of distances or
similarities rather than in terms of raw data. This is very important.
See justification at the end of this chapter.

5.4.1 Principle of the test

The Mantel procedure tests the linear correlation between similarity or
distance matrices. For example, one could use it to compare a matrix
Y of Bray-Curtis distances among sites based on species abundances
and a matrix X of Euclidean distances among the same sites, built on
the basis of remote-sensing informations. The test will tell if the
species-based distances are significantly, linearly correlated with the
remote-sensing-based distances, In other words, it will answer a
question of the type:

"Do pairs of sites that are similar in terms of species composition also
tend to be similar in terms of spectral signatures?"

If it is the case, then one will have gained some confidence in the
perspective of assessing variation in species composition by means of
variation in remote sensing data. Such a conclusion must be made with
                                                
2 Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res.

27: 209-220.
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caution, since the interpretation has to be made in the "world of
distances" and not in the "world of raw data".

Formally, the hypotheses of the Mantel test can be stated as follows:

H0:  the distances (or similarities) among objects in matrix Y are not
(linearly) correlated with the corresponding distances in matrix X.

H1: the distances among objects in matrix Y are linearly correlated to
the distances in X.

The original Mantel z statistic, i.e. the measure used to evaluate the
resemblance between the two matrices, is:

zM = xij yij
j =i+1

n

∑
i=1

n−1

∑

where i and j are row and column indices of the resemblance matrices.

However, nowadays the Mantel test is generally computed using the
standardized Mantel r statistic, whose formula is the same as that of
Pearson's r correlation coefficient:

rM =
1

d −1

xij − x 

sx

 

 
 

 

 
 

yij − y 

sy

 

 
  

 

 
  

j =i+1

n

∑
i=1

n−1

∑

where i and j are as above, x-bar, y-bar, sx and sy are the means and
standard deviations of the distance values of each matrix,

and d = n(n–1)/2 is the number of distance or similarity measures in
one of the upper triangular matrices.

Variants of the Mantel test can be computed using rank correlations.

5.4.2. Example

Let us imagine two similarity matrices between 4 objects:
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Figure 33 - Two fictitious similarity matrices between 4 objects.

Mantel's z statistic is computed as follows:

z = (0.25 × 0.43) + (0.43 × 0.41) + (0.55 × 0.47) + (0.17 × 0.22) +

        + (0.39 × 0.60) + (0.66 × 0.71) = 1.2823

This value (1.2823) is the "true" (observed) value, that must then be
compared to a reference distribution  obtained by randomly permuting
(99 or 999 or 9999 times) the rows and corresponding columns of one
of the two similarity matrices. Beware: the values of the similarity
matrices cannot be permuted completely at random. The permutation
scheme is actually equivalent to permuting the raw data and
recomputing the similarities.

Finally, the observed z value is compared to the reference distribution
in the same way as in the Pearson correlation example of Section 5.2,
using the one-tailed hypothesis count. Indeed, if one has used two
similarity matrices or two distances matrices (not a similarity and a
distance matrix!), then the only meaningful alternative hypothesis in
ecology is that the distances or similarities are positively correlated. A
negative correlation between distance measures would mean that, for
instance, the sites would be more similar as perceived by the living
community when they are less similar with respect to the remote
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sensing variables. This illustrates the specificities of the interpretation
of a Mantel test, which must be based on a reasoning on association
measures and not on raw data.

Additional remarks:

- like Pearson's correlation coefficient, the Mantel test also has a partial
form, where the matrix correlation rM(AB.C) between two matrices A
and B is tested while controlling for the effect of matrix C. rM(AB.C)
is computed in the same way as a partial Pearson correlation
coefficient;

- the Mantel test has sometimes be used to detect linear geographical
gradients. The Y matrix was as usual (e.g. Bray-Curtis distance on
species data). The X matrix contained Euclidean distances computed
from the geographical coordinates of the sites. Note, however, that
much more powerful techniques, based on raw data, are available
nowadays to detect spatial structures, so that this approach must now
be avoided.

Words of caution (Mantel test)

The paragraph below is an exerpt from a text by Pierre Legendre. It
warns users against misuses of the Mantel test.

"Empiricists who frown upon theoretical justifications should be
interested in the fact that the R2

M of a Mantel test or a regression on
distance matrices is always much lower than the R2 of a (multiple)
regression or canonical analysis computed on the raw data, when it is
possible to do so; this has often been noted by users of the Mantel test.
This was one of the results reported by Dutilleul et al. (2000, Table
2)3; it can easily be verified using any data set. Legendre (2000, Table

                                                
3 Dutilleul, P., J. D. Stockwell, D. Frigon, and P. Legendre. 2000. The Mantel-Pearson paradox: statistical

considerations and ecological implications. Journal of Agricultural, Biological, and
Environmental Statistics 5: 131-150.
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II)4 has also shown that the power of a Pearson correlation (i.e., its
capacity to reject the null hypothesis when H0 is false) is much higher
than the power of a simple Mantel test computed on distance matrices
derived from the same data (...). Hence, whenever possible, use
statistical procedures based on tables of raw data, such as correlation,
regression, or canonical analysis. Save the Mantel test and derived
forms to test hypotheses formulated in terms of distances."

Another paper has been published recently by Legendre et al. (2005)5,
comparing the performances of tests based on raw data and Mantel
tests computed on distance matrices derived from the same data. The
theoretical developments and simulation results presented in this paper
led to the following observations:

(1) The variance of a community composition table is a measure of
beta diversity.

(2) The variance of a dissimilarity matrix among sites is neither the
variance of the community composition table nor a measure of beta
diversity; hence, partitioning on distance matrices should not be used
to study the variation in community composition among sites.

(3) In all of the simulations, partitioning on distance matrices
underestimated the amount of variation in community composition
explained by the raw-data approach.

(4) The tests of significance in the distance approach had less power
than the tests of canonical ordination. Hence, the proper statistical
procedure for partitioning the spatial variation of community
composition data among environmental and spatial components, and
for testing hypotheses about the origin and maintenance of variation in
community composition among sites, is canonical partitioning.

                                                
4 Legendre, P. 2000. Comparison of permutation methods for the partial correlation and partial Mantel tests.

Journal of Statistical Computation and Simulation 67: 37-73.
5 Legendre, P., D. Borcard and P. R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial

variation of community composition data. Ecological Monographs 75: 435-450.
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5.5 The controversy about variation partitioning

In 1994 Legendre et al.6 proposed an extension of the Mantel
approach, called multiple regression on distance matrices. This
extension was devised for a specific context, phylogeny, where some
hypotheses are explicitly stated in terms of distance matrices and
cannot be restated in terms of raw data, and where the aim was to
assess the influence of several "explanatory" distance matrices on a
"response" distance matrix. The distance matrices are unrolled and
treated as in multiple regression, but the significance test requires one
of several complex permutation schemes. A Mantel R-square (RM

2) can
be computed, but can be used only as a measure of fit of the model.

In recent years, several researchers have proposed to use multiple
regression on distance matrices to compute distance-based variation
partitioning (e.g. Duivenvoorden et al. 20027, Tuomisto et al. 20038).
In some papers this technique was applied to hypotheses proper to the
distance world, but in others it has been applied as an equivalent to
raw-data based variation partitioning (this latter using canonical
ordination, as explained in Chapter 4b).

In our 2005 paper cited above (Legendre, Borcard & Peres-Neto) we
demonstrated that (1) the distance approach to partitioning  is not
equivalent to the partitioning of raw data; (2) The restatement of raw-
data based hypotheses into the distance world leads to tests that are
much less powerful than their equivalent in the raw-data world; (3)
Therefore, whenever one can state hypotheses in terms of raw data,
one should test these in the world of raw data and by all means avoid
to translate them into distance-based hypotheses. Furthermore,
following a Comment by Tuomisto & Ruokolainen9  accusing us of

                                                
6 Legendre, P., F.-J. Lapointe, and P. Casgrain. 1994. Modeling brain evolution from behavior: a permutational regression
approach. Evolution 48 :1487-1499.
7 Duivenvoorden, J. F., J.-C. Svenning, and S. J. Wright. 2002. Beta diversity in tropical forests. Science 295 :636–637.
8 Tuomisto, H., K. Ruokolainen, and M. Yli-Halla. 2003. Dispersal, environment, and floristic variation of western
Amazonian forests. Science 299 :241–244.
9 Tuomisto, H., and K. Ruokolainen. 2006. Analyzing or explaining beta diversity? Understanding the targets of different
methods of analysis. Ecology 87 :2697-2708.
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confusing the issues, we have submitted another paper10 where we
demonstrate by new simulations that, even in the cases where the
distance approach would be appropriate in terms of ecological
hypotheses, distance-based variation partitioning still remains highly
suspect on the statistical side for several reasons. Among these reasons
are: (1) while an unbiased estimation of a fraction of variation is
available in the raw data world (adjusted R2), no equivalent exist or
can be proposed in the distance world; hence, no unbiased estimation
of a fraction of variation can be computed. (2) The use of the Mantel
R-square (RM

2) as a measure of the fraction of explained variation, and
following that as the basis for computation of the fractions in variation
partitioning, is mathematically highly suspicious and its validity has
never been demonstrated. (3) Raw-data based R2 are additive (as
shown in Chapter 4b), but in the distance world they are not: "We
now know how to partition the variation of a response matrix Y with
respect to several explanatory matrices X using RDA. In raw data
partitioning, an identical total fraction of explained variation is
obtained, whether all explanatory variables are put in a single table X
or they are divided into any number of subtables (environmental,
spatial, etc.). The effects of the explanatory variables are thus additive.
This is not the case in partitioning on distance matrices: different total
amounts of explained variation for the response Y are obtained if one
includes all explanatory variables in a single distance matrix or if
separate distance matrices are computed for the various explanatory
variables." (Legendre et al. in review).

                                                
10 Legendre, P., D. Borcard & P. R. Peres-Neto ( in review): Analyzing or explaining beta diversity: Comment. Ecology.


