Document expliquant la sortie sommaire de la fonction « mypart » ``` > summary(ARM1) Call: mvpart(form = data.matrix(OriSph) ~ Subsdens + Watrcont + Sphagn.1 + Sphagn.2 + Sphagn.3 + Sphagn.4 + Lignlitt + Barepeat + Interface + Shrub.1 + Shrub.2 + Shrub.3 + Blanket + Hummock, data = Ori_Sph_Env, xv = "min", xvmult = 500) Marianne Philibert 20/3/08 16:37 Commentaire: L'argument « xv = min » n = 70 vous permet de spécifier que vous voulez CP nsplit rel error xerror l'arbre avec la plus petite erreur relative de 1 0.25169191 0 1.0000000 1.0305347 0.04310513 validation croisée telle que décrite dans le 1 0.7483081 0.8691889 0.05573914 2 0.06177166 Marianne Philibert 20/3/08 16:38 3 0.04493453 2 0.6865364 0.8473758 0.05644584 Commentaire: L'argument « xvmult » 4 0.04210851 3 0.6416019 0.8420220 0.05838438 vous permet de choisir le nombre de validation 5 0.04153963 4 0.5994934 0.8390042 0.05863637 croisée multiple que vous voulez faire (le 6 0.02885338 5 0.5579537 0.8334403 0.05990103 nombre de permutations en d'autres mots). 7 0.02792465 6 0.5291004 0.8273274 0.05964728 Marianne Philibert 20/3/08 16:39 Commentaire: À l'intérieur de ce tableau sommaire, vous trouverez plein d'information # Suite à ce tableau, vous avez des informations plus détaillées pour chacune des bipartitions. # supplémentaire concernant votre arbre. Entre autres, cette colonne « CP », soit « complexity Node number 1: 70 observations, complexity param=0.2516919 parameter » en anglais, vous donne la variance expliquée par nœuds. Means=0.2216,0.04894,0.2382,0.04425,0.01397,0.01749,0.08566,0.011 82,0.04772,0.1108,0.06104,0.09172,0.1772,0.3012,0.3267,0.3663,0.0 Commentaire: La colonne « nsplit » vous informe de quelle bipartition vous regardez sur 6608,0.08495,0.05634,0.04322,0.02899,0.0138,0.08462,0.01009,0.061 cette ligne. 21,0.01721,0.06492,0.01064,0.04639,0.01387,0.235,0.03918,0.0664,0 .0596,0.05574, Summed MSE=0.3886434 left son=2 (39 obs) right son=3 (31 obs) Primary splits: Watrcont < 385.1 to the right, improve=0.2516919, (0 missing) to the left, improve=0.1643434, (0 missing) Hummock < 0.5 Blanket < 0.5 to the right, improve=0.1643434, (0 missing) Marianne Philibert 20/3/08 16:5 Shrub.1 < 0.5 to the right, improve=0.1631910, (0 missing) Commentaire: Voici les détails de la improve=0.1512653, (0 missing) Shrub.3 < 0.5 to the left, deuxième bipartition Marianne Philibert 20/3/08 16:54 Node number 2: 39 observations, complexity param=0.06177166 Commentaire: Voici sa contribution au coefficient de détermination Marianne Philibert 20/3/08 16:5 Means=0.201,0.01414,0.2578,0.008675,0.003837,0.005072,0.05587,0.0 Commentaire: Le nombre d'objets qui 04832, 0.07307, 0.04842, 0.01157, 0.07563, 0.0686, 0.229, 0.2622, 0.522, 0.0686, 0.0 sont aller à gauche .0226,0.1083,0.04437,0.01118,0.008654,0.0135,0.1275,0.005746,0.08 276,0.004832,0.02016,0.001566,0.03754,0.005024,0.3314,0.04456,0.0 Commentaire: Le nombre d'objets qui sont 8916,0.06817,0.1, Summed MSE=0.3037596 aller à droite left son=4 (7 obs) right son=5 (32 obs) Primary splits: Commentaire: Nom de la variable avant Subsdens < 51.795 to the right, improve=0.1418548, (0 missing) servit à faire la bipartition to the left, improve=0.1073556, (0 missing) to the right, improve=0.1073556, (0 missing) Hummock < 0.5 Blanket < 0.5 Commentaire: Seuil auquel on a divisé les ``` sites en deux ``` to the right, improve=0.0894604, (0 missing) Shrub.1 < 0.5 complexity param=0.04493453 Node number 3: 31 observations, Means=0.2475,0.09272,0.2135,0.089,0.02672,0.03311,0.1231,0.0206,0 .01583, 0.1892, 0.1233, 0.112, 0.3139, 0.392, 0.4079, 0.1704, 0.1208, 0.05 557,0.0714,0.08352,0.05457,0.01417,0.03071,0.01556,0.0341,0.03278 ,0.1212,0.02205,0.05754,0.025,0.1136,0.03242,0.03777,0.04881,0, Summed MSE=0.2745525 left son=6 (11 obs) right son=7 (20 obs) Primary splits: Watrcont < 323.54 to the right, improve=0.1436291, (0 missing) Shrub.1 < 0.5 to the right, improve=0.1342149, (0 missing) Subsdens < 38.895 to the left, improve=0.1117806, (0 missing) to the left, improve=0.0859100, (0 missing) to the right, improve=0.0859100, (0 missing) Blanket < 0.5 Hummock < 0.5 Node number 4: 7 observations Means=0.06388,0.02309,0.08645,0,0.02138,0,0.1057,0.01234,0.0213,0 ,0.008726,0.02985,0.07294,0.1181,0.1198,0.7164,0.02138,0.09769,0. 02346,0.01511,0.02618,0.008726,0.3209,0.008726,0.02408,0.01234,0. 01234,0.008726,0.07603,0,0.211,0,0.02084,0.02648,0.05617, Summed MSE=0.2577799 Node number 5: 32 observations, complexity param=0.04153963 Means=0.231,0.01219,0.2953,0.01057,0,0.006182,0.04497,0.003189,0. 08439, 0.05901, 0.01219, 0.08564, 0.06765, 0.2533, 0.2933, 0.4794, 0.0228 7,0.1106,0.04895,0.01032,0.004821,0.01454,0.08516,0.005094,0.0955 9,0.003189,0.02187,0,0.02912,0.006123,0.3578,0.05431,0.1041,0.077 29,0.1096, Summed MSE=0.261302 left son=10 (25 obs) right son=11 (7 obs) Primary splits: Blanket < 0.5 to the right, improve=0.13515100, (0 missing) Hummock < 0.5 to the left, improve=0.13515100, (0 missing) to the right, improve=0.11258570, (0 missing) Shrub.1 < 0.5 Shrub.3 < 0.5 to the left, improve=0.09503507, (0 missing) Subsdens < 31.72 to the right, improve=0.07990299, (0 missing) Node number 6: 11 observations, complexity param=0.04210851 Means=0.2198,0.06715,0.2363,0.04605,0.04027,0.01595,0.1034,0.0275 ,0.03771,0.1571,0.1132,0.08953,0.2483,0.3277,0.3669,0.3443,0.1178 ,0.04453,0.03804,0.06735,0.03883,0.01447,0.03701,0.01823,0.07427, 0.02853, 0.0765, 0.01562, 0.0415, 0.009091, 0.2376, 0.05007, 0.0827, 0.0760, 0.0827, 0.0760, 0.0827, 0.0760, 0.0827, 758,0, Summed MSE=0.295447 left son=12 (4 obs) right son=13 (7 obs) ``` Watrcont < 645.55 to the right, improve=0.1043428, (0 missing) ``` Primary splits: Subsdens < 36.38 to the left, improve=0.3524902, (0 missing) Shrub.1 < 0.5 to the right, improve=0.2190312, (0 missing) Blanket < 0.5 to the right, improve=0.2149659, (0 missing) Hummock < 0.5 to the left, improve=0.2149659, (0 missing) Sphagn.2 < 0.5 to the right, improve=0.1536943, (0 missing) ``` #### Node number 7: 20 observations Node number 10: 25 observations, complexity param=0.02885338 $\begin{array}{l} \text{Means=0.2119,0.007551,0.3109,0,0.003468,0.04228,0.004082,0.0888} \\ \text{2,0.06294,0,0.0872,0.02889,0.2185,0.2629,0.5236,0.01736,0.1145,0.04484,0.004082,0.00343,0.01445,0.06392,0,0.09652,0.004082,0.01671,0,0.03253,0.003393,0.4088,0.05216,0.1122,0.07444,0.1027, Summed \\ \text{MSE=0.2163176} \end{array}$ left son=20 (14 obs) right son=21 (11 obs) Primary splits: Shrub.1 < 0.5 to the right, improve=0.14514910, (0 missing) Watrcont < 608.235to the right, improve=0.12075730, (0 missing) Shrub.2 < 0.5 to the right, improve=0.09383389, (0 missing) Shrub.3 < 0.5 to the left, improve=0.08603634, (0 missing) Subsdens < 46.92 to the right, improve=0.06640176, (0 missing) ### Node number 11: 7 observations $\begin{array}{l} \text{Means=0.2995,0.02874,0.2397,0.04833,0,0.01587,0.05458,0,0.06857,0} \\ \text{.04499,0.05572,0.08009,0.2061,0.3775,0.4019,0.3216,0.04252,0.0968} \\ \text{1,0.0636,0.03262,0.009788,0.01489,0.161,0.02329,0.09226,0,0.04033} \\ \text{,0,0.01695,0.01587,0.1756,0.06199,0.07515,0.08747,0.1343, Summed} \\ \text{MSE=0.2605197} \end{array}$ ### Node number 12: 4 observations ### Node number 13: 7 observations Means=0.261,0.1055,0.2109,0.07236,0.06327,0.01207,0.1295,0.03023,0.03578,0.1596,0.1778,0.07761,0.3281,0.3346,0.3428,0.4042,0.1659, 0.02052,0.05977,0.1058,0.06101,0.02273,0.04459,0.02865,0.0397,0.0 4483,0.1202,0.02454,0.03866,0.01429,0.0855,0.01026,0.02885,0.0307 7,0, Summed MSE=0.2050072 ## Node number 20: 14 observations Means=0.2248,0,0.3676,0,0,0,0,0,0.1368,0,0,0.1172,0,0.1758,0.264,0.4967,0.01752,0.1386,0.02401,0,0,0.008964,0.07499,0,0.07544,0,0,0,0.008303,0,0.4043,0.04553,0.1312,0.05362,0.1767, Summed MSE=0.1862325 ### Node number 21: 11 observations Means=0.1954,0.01716,0.2387,0,0,0.007883,0.0961,0.009278,0.02778,0.143,0,0.04904,0.06566,0.2729,0.2615,0.5579,0.01716,0.0838,0.071 35,0.009278,0.007795,0.02143,0.04984,0,0.1234,0.009278,0.03797,0,0.06336,0.007711,0.4145,0.06059,0.08806,0.1009,0.008552, Summed MSE=0.1832479